MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulf Structured version   Visualization version   GIF version

Theorem xmulf 13277
Description: The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xmulf ·e :(ℝ* × ℝ*)⟶ℝ*

Proof of Theorem xmulf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 11285 . . . . 5 0 ∈ ℝ*
21a1i 11 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥 = 0 ∨ 𝑦 = 0)) → 0 ∈ ℝ*)
3 pnfxr 11292 . . . . . 6 +∞ ∈ ℝ*
43a1i 11 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) → +∞ ∈ ℝ*)
5 mnfxr 11295 . . . . . . 7 -∞ ∈ ℝ*
65a1i 11 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → -∞ ∈ ℝ*)
7 xmullem 13269 . . . . . . . 8 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ ¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → 𝑥 ∈ ℝ)
8 ancom 460 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ↔ (𝑦 ∈ ℝ*𝑥 ∈ ℝ*))
9 orcom 869 . . . . . . . . . . . 12 ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝑦 = 0 ∨ 𝑥 = 0))
109notbii 320 . . . . . . . . . . 11 (¬ (𝑥 = 0 ∨ 𝑦 = 0) ↔ ¬ (𝑦 = 0 ∨ 𝑥 = 0))
118, 10anbi12i 627 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ↔ ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) ∧ ¬ (𝑦 = 0 ∨ 𝑥 = 0)))
12 orcom 869 . . . . . . . . . . 11 ((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))) ↔ (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ∨ ((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞))))
1312notbii 320 . . . . . . . . . 10 (¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))) ↔ ¬ (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ∨ ((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞))))
1411, 13anbi12i 627 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ↔ (((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) ∧ ¬ (𝑦 = 0 ∨ 𝑥 = 0)) ∧ ¬ (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ∨ ((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)))))
15 orcom 869 . . . . . . . . . 10 ((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))) ↔ (((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ∨ ((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞))))
1615notbii 320 . . . . . . . . 9 (¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))) ↔ ¬ (((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ∨ ((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞))))
17 xmullem 13269 . . . . . . . . 9 (((((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) ∧ ¬ (𝑦 = 0 ∨ 𝑥 = 0)) ∧ ¬ (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ∨ ((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)))) ∧ ¬ (((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ∨ ((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)))) → 𝑦 ∈ ℝ)
1814, 16, 17syl2anb 597 . . . . . . . 8 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ ¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → 𝑦 ∈ ℝ)
197, 18remulcld 11268 . . . . . . 7 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ ¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → (𝑥 · 𝑦) ∈ ℝ)
2019rexrd 11288 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ ¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → (𝑥 · 𝑦) ∈ ℝ*)
216, 20ifclda 4559 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) → if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)) ∈ ℝ*)
224, 21ifclda 4559 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) → if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))) ∈ ℝ*)
232, 22ifclda 4559 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) ∈ ℝ*)
2423rgen2 3193 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) ∈ ℝ*
25 df-xmul 13120 . . 3 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
2625fmpo 8066 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) ∈ ℝ* ↔ ·e :(ℝ* × ℝ*)⟶ℝ*)
2724, 26mpbi 229 1 ·e :(ℝ* × ℝ*)⟶ℝ*
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 846   = wceq 1534  wcel 2099  wral 3057  ifcif 4524   class class class wbr 5142   × cxp 5670  wf 6538  (class class class)co 7414  cr 11131  0cc0 11132   · cmul 11137  +∞cpnf 11269  -∞cmnf 11270  *cxr 11271   < clt 11272   ·e cxmu 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-addrcl 11193  ax-mulrcl 11195  ax-rnegex 11203  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-xmul 13120
This theorem is referenced by:  xmulcl  13278  xrsmul  21306
  Copyright terms: Public domain W3C validator