MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulf Structured version   Visualization version   GIF version

Theorem xmulf 13006
Description: The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xmulf ·e :(ℝ* × ℝ*)⟶ℝ*

Proof of Theorem xmulf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 11022 . . . . 5 0 ∈ ℝ*
21a1i 11 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥 = 0 ∨ 𝑦 = 0)) → 0 ∈ ℝ*)
3 pnfxr 11029 . . . . . 6 +∞ ∈ ℝ*
43a1i 11 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) → +∞ ∈ ℝ*)
5 mnfxr 11032 . . . . . . 7 -∞ ∈ ℝ*
65a1i 11 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → -∞ ∈ ℝ*)
7 xmullem 12998 . . . . . . . 8 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ ¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → 𝑥 ∈ ℝ)
8 ancom 461 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ↔ (𝑦 ∈ ℝ*𝑥 ∈ ℝ*))
9 orcom 867 . . . . . . . . . . . 12 ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝑦 = 0 ∨ 𝑥 = 0))
109notbii 320 . . . . . . . . . . 11 (¬ (𝑥 = 0 ∨ 𝑦 = 0) ↔ ¬ (𝑦 = 0 ∨ 𝑥 = 0))
118, 10anbi12i 627 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ↔ ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) ∧ ¬ (𝑦 = 0 ∨ 𝑥 = 0)))
12 orcom 867 . . . . . . . . . . 11 ((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))) ↔ (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ∨ ((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞))))
1312notbii 320 . . . . . . . . . 10 (¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))) ↔ ¬ (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ∨ ((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞))))
1411, 13anbi12i 627 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ↔ (((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) ∧ ¬ (𝑦 = 0 ∨ 𝑥 = 0)) ∧ ¬ (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ∨ ((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)))))
15 orcom 867 . . . . . . . . . 10 ((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))) ↔ (((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ∨ ((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞))))
1615notbii 320 . . . . . . . . 9 (¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))) ↔ ¬ (((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ∨ ((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞))))
17 xmullem 12998 . . . . . . . . 9 (((((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) ∧ ¬ (𝑦 = 0 ∨ 𝑥 = 0)) ∧ ¬ (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ∨ ((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)))) ∧ ¬ (((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ∨ ((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)))) → 𝑦 ∈ ℝ)
1814, 16, 17syl2anb 598 . . . . . . . 8 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ ¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → 𝑦 ∈ ℝ)
197, 18remulcld 11005 . . . . . . 7 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ ¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → (𝑥 · 𝑦) ∈ ℝ)
2019rexrd 11025 . . . . . 6 (((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) ∧ ¬ (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)))) → (𝑥 · 𝑦) ∈ ℝ*)
216, 20ifclda 4494 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) ∧ ¬ (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)))) → if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)) ∈ ℝ*)
224, 21ifclda 4494 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ (𝑥 = 0 ∨ 𝑦 = 0)) → if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))) ∈ ℝ*)
232, 22ifclda 4494 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) ∈ ℝ*)
2423rgen2 3120 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) ∈ ℝ*
25 df-xmul 12850 . . 3 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
2625fmpo 7908 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) ∈ ℝ* ↔ ·e :(ℝ* × ℝ*)⟶ℝ*)
2724, 26mpbi 229 1 ·e :(ℝ* × ℝ*)⟶ℝ*
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  ifcif 4459   class class class wbr 5074   × cxp 5587  wf 6429  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009   ·e cxmu 12847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-addrcl 10932  ax-mulrcl 10934  ax-rnegex 10942  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-xmul 12850
This theorem is referenced by:  xmulcl  13007  xrsmul  20616
  Copyright terms: Public domain W3C validator