Home | Metamath
Proof Explorer Theorem List (p. 131 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | xrinf0 13001 | The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
⊢ inf(∅, ℝ*, < ) = +∞ | ||
Theorem | infxrss 13002 | Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < )) | ||
Theorem | reltre 13003* | For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020.) |
⊢ ∀𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥 | ||
Theorem | rpltrp 13004* | For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020.) |
⊢ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 | ||
Theorem | reltxrnmnf 13005* | For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.) |
⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) | ||
Theorem | infmremnf 13006 | The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.) |
⊢ inf(ℝ, ℝ*, < ) = -∞ | ||
Theorem | infmrp1 13007 | The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020.) |
⊢ inf(ℝ+, ℝ, < ) = 0 | ||
Syntax | cioo 13008 | Extend class notation with the set of open intervals of extended reals. |
class (,) | ||
Syntax | cioc 13009 | Extend class notation with the set of open-below, closed-above intervals of extended reals. |
class (,] | ||
Syntax | cico 13010 | Extend class notation with the set of closed-below, open-above intervals of extended reals. |
class [,) | ||
Syntax | cicc 13011 | Extend class notation with the set of closed intervals of extended reals. |
class [,] | ||
Definition | df-ioo 13012* | Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | ||
Definition | df-ioc 13013* | Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | ||
Definition | df-ico 13014* | Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | ||
Definition | df-icc 13015* | Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | ||
Theorem | ixxval 13016* | Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) | ||
Theorem | elixx1 13017* | Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | ||
Theorem | ixxf 13018* | The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* | ||
Theorem | ixxex 13019* | The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ 𝑂 ∈ V | ||
Theorem | ixxssxr 13020* | The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ (𝐴𝑂𝐵) ⊆ ℝ* | ||
Theorem | elixx3g 13021* | Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | ||
Theorem | ixxssixx 13022* | An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) ⇒ ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) | ||
Theorem | ixxdisj 13023* | Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅) | ||
Theorem | ixxun 13024* | Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵)) & ⊢ 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵 ∧ 𝐵𝑋𝐶) → 𝑤𝑈𝐶)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵 ∧ 𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶)) | ||
Theorem | ixxin 13025* | Intersection of two intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧 ∧ 𝐶𝑅𝑧))) & ⊢ ((𝑧 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → (𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵 ∧ 𝑧𝑆𝐷))) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑂if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) | ||
Theorem | ixxss1 13026* | Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) | ||
Theorem | ixxss2 13027* | Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) ⇒ ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) | ||
Theorem | ixxss12 13028* | Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶 ∧ 𝐶𝑇𝑤) → 𝐴𝑅𝑤)) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤𝑈𝐷 ∧ 𝐷𝑋𝐵) → 𝑤𝑆𝐵)) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶 ∧ 𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵)) | ||
Theorem | ixxub 13029* | Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤𝑆𝐵)) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤 ≤ 𝐵)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴𝑅𝑤)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴 ≤ 𝑤)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) = 𝐵) | ||
Theorem | ixxlb 13030* | Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by AV, 12-Sep-2020.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤𝑆𝐵)) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤 ≤ 𝐵)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴𝑅𝑤)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴 ≤ 𝑤)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴) | ||
Theorem | iooex 13031 | The set of open intervals of extended reals exists. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (,) ∈ V | ||
Theorem | iooval 13032* | Value of the open interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | ||
Theorem | ioo0 13033 | An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | ioon0 13034 | An open interval of extended reals is nonempty iff the lower argument is less than the upper argument. (Contributed by NM, 2-Mar-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵)) | ||
Theorem | ndmioo 13035 | The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | ||
Theorem | iooid 13036 | An open interval with identical lower and upper bounds is empty. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝐴(,)𝐴) = ∅ | ||
Theorem | elioo3g 13037 | Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elioore 13038 | A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) | ||
Theorem | lbioo 13039 | An open interval does not contain its left endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) | ||
Theorem | ubioo 13040 | An open interval does not contain its right endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ ¬ 𝐵 ∈ (𝐴(,)𝐵) | ||
Theorem | iooval2 13041* | Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | ||
Theorem | iooin 13042 | Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) | ||
Theorem | iooss1 13043 | Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶)) | ||
Theorem | iooss2 13044 | Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶)) | ||
Theorem | iocval 13045* | Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵)}) | ||
Theorem | icoval 13046* | Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)}) | ||
Theorem | iccval 13047* | Value of the closed interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) | ||
Theorem | elioo1 13048 | Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elioo2 13049 | Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elioc1 13050 | Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | elico1 13051 | Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elicc1 13052 | Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | iccid 13053 | A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.) |
⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) | ||
Theorem | ico0 13054 | An empty open interval of extended reals. (Contributed by FL, 30-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | ioc0 13055 | An empty open interval of extended reals. (Contributed by FL, 30-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | icc0 13056 | An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | ||
Theorem | dfrp2 13057 | Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
⊢ ℝ+ = (0(,)+∞) | ||
Theorem | elicod 13058 | Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 < 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) | ||
Theorem | icogelb 13059 | An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) | ||
Theorem | elicore 13060 | A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ) | ||
Theorem | ubioc1 13061 | The upper bound belongs to an open-below, closed-above interval. See ubicc2 13126. (Contributed by FL, 29-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ∈ (𝐴(,]𝐵)) | ||
Theorem | lbico1 13062 | The lower bound belongs to a closed-below, open-above interval. See lbicc2 13125. (Contributed by FL, 29-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵)) | ||
Theorem | iccleub 13063 | An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) | ||
Theorem | iccgelb 13064 | An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | ||
Theorem | elioo5 13065 | Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | eliooxr 13066 | A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.) |
⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | ||
Theorem | eliooord 13067 | Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | ||
Theorem | elioo4g 13068 | Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | ioossre 13069 | An open interval is a set of reals. (Contributed by NM, 31-May-2007.) |
⊢ (𝐴(,)𝐵) ⊆ ℝ | ||
Theorem | ioosscn 13070 | An open interval is a set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴(,)𝐵) ⊆ ℂ | ||
Theorem | elioc2 13071 | Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | elico2 13072 | Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elicc2 13073 | Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | elicc2i 13074 | Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) | ||
Theorem | elicc4 13075 | Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | iccss 13076 | Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | ||
Theorem | iccssioo 13077 | Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
Theorem | icossico 13078 | Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴[,)𝐵)) | ||
Theorem | iccss2 13079 | Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | ||
Theorem | iccssico 13080 | Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | ||
Theorem | iccssioo2 13081 | Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
Theorem | iccssico2 13082 | Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | ||
Theorem | ioomax 13083 | The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
⊢ (-∞(,)+∞) = ℝ | ||
Theorem | iccmax 13084 | The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.) |
⊢ (-∞[,]+∞) = ℝ* | ||
Theorem | ioopos 13085 | The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.) |
⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | ||
Theorem | ioorp 13086 | The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ (0(,)+∞) = ℝ+ | ||
Theorem | iooshf 13087 | Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)))) | ||
Theorem | iocssre 13088 | A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ) | ||
Theorem | icossre 13089 | A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | ||
Theorem | iccssre 13090 | A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | ||
Theorem | iccssxr 13091 | A closed interval is a set of extended reals. (Contributed by FL, 28-Jul-2008.) (Revised by Mario Carneiro, 4-Jul-2014.) |
⊢ (𝐴[,]𝐵) ⊆ ℝ* | ||
Theorem | iocssxr 13092 | An open-below, closed-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
⊢ (𝐴(,]𝐵) ⊆ ℝ* | ||
Theorem | icossxr 13093 | A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
⊢ (𝐴[,)𝐵) ⊆ ℝ* | ||
Theorem | ioossicc 13094 | An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) |
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | ||
Theorem | iccssred 13095 | A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) | ||
Theorem | eliccxr 13096 | A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) | ||
Theorem | icossicc 13097 | A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) | ||
Theorem | iocssicc 13098 | A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) | ||
Theorem | ioossico 13099 | An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) | ||
Theorem | iocssioo 13100 | Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶(,]𝐷) ⊆ (𝐴(,)𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |