| Metamath
Proof Explorer Theorem List (p. 131 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lediv1d 13001 | Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))) | ||
| Theorem | ltmuldivd 13002 | 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) | ||
| Theorem | ltmuldiv2d 13003 | 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) | ||
| Theorem | lemuldivd 13004 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 / 𝐶))) | ||
| Theorem | lemuldiv2d 13005 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 / 𝐶))) | ||
| Theorem | ltdivmuld 13006 | 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐶 · 𝐵))) | ||
| Theorem | ltdivmul2d 13007 | 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 · 𝐶))) | ||
| Theorem | ledivmuld 13008 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐶 · 𝐵))) | ||
| Theorem | ledivmul2d 13009 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 · 𝐶))) | ||
| Theorem | ltmul1dd 13010 | The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐶)) | ||
| Theorem | ltmul2dd 13011 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · 𝐴) < (𝐶 · 𝐵)) | ||
| Theorem | ltdiv1dd 13012 | Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) < (𝐵 / 𝐶)) | ||
| Theorem | lediv1dd 13013 | Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)) | ||
| Theorem | lediv12ad 13014 | Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) | ||
| Theorem | mul2lt0rlt0 13015 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) | ||
| Theorem | mul2lt0rgt0 13016 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0) | ||
| Theorem | mul2lt0llt0 13017 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ ((𝜑 ∧ 𝐴 < 0) → 0 < 𝐵) | ||
| Theorem | mul2lt0lgt0 13018 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 < 0) | ||
| Theorem | mul2lt0bi 13019 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴 ∧ 𝐵 < 0)))) | ||
| Theorem | prodge0rd 13020 | Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) ⇒ ⊢ (𝜑 → 0 ≤ 𝐵) | ||
| Theorem | prodge0ld 13021 | Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by AV, 9-Jul-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
| Theorem | ltdiv23d 13022 | Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 / 𝐵) < 𝐶) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) < 𝐵) | ||
| Theorem | lediv23d 13023 | Swap denominator with other side of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 / 𝐵) ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) ≤ 𝐵) | ||
| Theorem | lt2mul2divd 13024 | The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵))) | ||
| Theorem | nnledivrp 13025 | Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) | ||
| Theorem | nn0ledivnn 13026 | Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) | ||
| Theorem | addlelt 13027 | If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.) |
| ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) | ||
| Theorem | ge2halflem1 13028 | Half of an integer greater than 1 is less than or equal to the integer minus 1. (Contributed by AV, 1-Sep-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ≤ (𝑁 − 1)) | ||
| Syntax | cxne 13029 | Extend class notation to include the negative of an extended real. |
| class -𝑒𝐴 | ||
| Syntax | cxad 13030 | Extend class notation to include addition of extended reals. |
| class +𝑒 | ||
| Syntax | cxmu 13031 | Extend class notation to include multiplication of extended reals. |
| class ·e | ||
| Definition | df-xneg 13032 | Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.) |
| ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | ||
| Definition | df-xadd 13033* | Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))))) | ||
| Definition | df-xmul 13034* | Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) | ||
| Theorem | ltxr 13035 | The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 <ℝ 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))) | ||
| Theorem | elxr 13036 | Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | ||
| Theorem | xrnemnf 13037 | An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | ||
| Theorem | xrnepnf 13038 | An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | ||
| Theorem | xrltnr 13039 | The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) | ||
| Theorem | ltpnf 13040 | Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | ||
| Theorem | ltpnfd 13041 | Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 < +∞) | ||
| Theorem | 0ltpnf 13042 | Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 < +∞ | ||
| Theorem | mnflt 13043 | Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | ||
| Theorem | mnfltd 13044 | Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → -∞ < 𝐴) | ||
| Theorem | mnflt0 13045 | Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -∞ < 0 | ||
| Theorem | mnfltpnf 13046 | Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| ⊢ -∞ < +∞ | ||
| Theorem | mnfltxr 13047 | Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) | ||
| Theorem | pnfnlt 13048 | No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | ||
| Theorem | nltmnf 13049 | No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | ||
| Theorem | pnfge 13050 | Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | ||
| Theorem | pnfged 13051 | Plus infinity is an upper bound for extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → 𝐴 ≤ +∞) | ||
| Theorem | xnn0n0n1ge2b 13052 | An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.) |
| ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | ||
| Theorem | 0lepnf 13053 | 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 ≤ +∞ | ||
| Theorem | xnn0ge0 13054 | An extended nonnegative integer is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 10-Dec-2020.) |
| ⊢ (𝑁 ∈ ℕ0* → 0 ≤ 𝑁) | ||
| Theorem | mnfle 13055 | Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | ||
| Theorem | mnfled 13056 | Minus infinity is less than or equal to any extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → -∞ ≤ 𝐴) | ||
| Theorem | xrltnsym 13057 | Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | ||
| Theorem | xrltnsym2 13058 | 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ (𝐴 < 𝐵 ∧ 𝐵 < 𝐴)) | ||
| Theorem | xrlttri 13059 | Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 11102 or axlttri 11205. (Contributed by NM, 14-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | xrlttr 13060 | Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
| Theorem | xrltso 13061 | 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
| ⊢ < Or ℝ* | ||
| Theorem | xrlttri2 13062 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | xrlttri3 13063 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 9-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | ||
| Theorem | xrleloe 13064 | 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | xrleltne 13065 | 'Less than or equal to' implies 'less than' is not 'equals', for extended reals. (Contributed by NM, 9-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | ||
| Theorem | xrltlen 13066 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | dfle2 13067 | Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) | ||
| Theorem | dflt2 13068 | Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ < = ( ≤ ∖ I ) | ||
| Theorem | xrltle 13069 | 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | ||
| Theorem | xrltled 13070 | 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13069. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | xrleid 13071 | 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.) |
| ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | ||
| Theorem | xrleidd 13072 | 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13071. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐴) | ||
| Theorem | xrletri 13073 | Trichotomy law for extended reals. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
| Theorem | xrletri3 13074 | Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | ||
| Theorem | xrletrid 13075 | Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | xrlelttr 13076 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
| Theorem | xrltletr 13077 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | ||
| Theorem | xrletr 13078 | Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | ||
| Theorem | xrlttrd 13079 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | xrlelttrd 13080 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | xrltletrd 13081 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | xrletrd 13082 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) | ||
| Theorem | xrltne 13083 | 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | ||
| Theorem | nltpnft 13084 | An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | ||
| Theorem | xgepnf 13085 | An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ 𝐴 = +∞)) | ||
| Theorem | ngtmnft 13086 | An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | ||
| Theorem | xlemnf 13087 | An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞)) | ||
| Theorem | xrrebnd 13088 | An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | ||
| Theorem | xrre 13089 | A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
| Theorem | xrre2 13090 | An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) | ||
| Theorem | xrre3 13091 | A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) | ||
| Theorem | ge0gtmnf 13092 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | ||
| Theorem | ge0nemnf 13093 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) | ||
| Theorem | xrrege0 13094 | A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
| Theorem | xrmax1 13095 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | xrmax2 13096 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | xrmin1 13097 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
| Theorem | xrmin2 13098 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
| Theorem | xrmaxeq 13099 | The maximum of two extended reals is equal to the first if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐴) | ||
| Theorem | xrmineq 13100 | The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |