MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulval Structured version   Visualization version   GIF version

Theorem xmulval 13185
Description: Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))

Proof of Theorem xmulval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
21eqeq1d 2731 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 0 ↔ 𝐴 = 0))
3 simpr 484 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
43eqeq1d 2731 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = 0 ↔ 𝐵 = 0))
52, 4orbi12d 918 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
63breq2d 5119 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (0 < 𝑦 ↔ 0 < 𝐵))
71eqeq1d 2731 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = +∞ ↔ 𝐴 = +∞))
86, 7anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑦𝑥 = +∞) ↔ (0 < 𝐵𝐴 = +∞)))
93breq1d 5117 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 < 0 ↔ 𝐵 < 0))
101eqeq1d 2731 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = -∞ ↔ 𝐴 = -∞))
119, 10anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑦 < 0 ∧ 𝑥 = -∞) ↔ (𝐵 < 0 ∧ 𝐴 = -∞)))
128, 11orbi12d 918 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ↔ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞))))
131breq2d 5119 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (0 < 𝑥 ↔ 0 < 𝐴))
143eqeq1d 2731 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = +∞ ↔ 𝐵 = +∞))
1513, 14anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑥𝑦 = +∞) ↔ (0 < 𝐴𝐵 = +∞)))
161breq1d 5117 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 0 ↔ 𝐴 < 0))
173eqeq1d 2731 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = -∞ ↔ 𝐵 = -∞))
1816, 17anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 < 0 ∧ 𝑦 = -∞) ↔ (𝐴 < 0 ∧ 𝐵 = -∞)))
1915, 18orbi12d 918 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ↔ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
2012, 19orbi12d 918 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))) ↔ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))))
216, 10anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑦𝑥 = -∞) ↔ (0 < 𝐵𝐴 = -∞)))
229, 7anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑦 < 0 ∧ 𝑥 = +∞) ↔ (𝐵 < 0 ∧ 𝐴 = +∞)))
2321, 22orbi12d 918 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ↔ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞))))
2413, 17anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑥𝑦 = -∞) ↔ (0 < 𝐴𝐵 = -∞)))
2516, 14anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 < 0 ∧ 𝑦 = +∞) ↔ (𝐴 < 0 ∧ 𝐵 = +∞)))
2624, 25orbi12d 918 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ↔ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
2723, 26orbi12d 918 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))) ↔ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
28 oveq12 7396 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 · 𝑦) = (𝐴 · 𝐵))
2927, 28ifbieq2d 4515 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
3020, 29ifbieq2d 4515 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))) = if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
315, 30ifbieq2d 4515 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
32 df-xmul 13074 . 2 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
33 c0ex 11168 . . 3 0 ∈ V
34 pnfex 11227 . . . 4 +∞ ∈ V
35 mnfxr 11231 . . . . . 6 -∞ ∈ ℝ*
3635elexi 3470 . . . . 5 -∞ ∈ V
37 ovex 7420 . . . . 5 (𝐴 · 𝐵) ∈ V
3836, 37ifex 4539 . . . 4 if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) ∈ V
3934, 38ifex 4539 . . 3 if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) ∈ V
4033, 39ifex 4539 . 2 if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) ∈ V
4131, 32, 40ovmpoa 7544 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  ifcif 4488   class class class wbr 5107  (class class class)co 7387  0cc0 11068   · cmul 11073  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208   ·e cxmu 13071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pnf 11210  df-mnf 11211  df-xr 11212  df-xmul 13074
This theorem is referenced by:  xmulcom  13226  xmul01  13227  xmulneg1  13229  rexmul  13231  xmulpnf1  13234
  Copyright terms: Public domain W3C validator