MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulval Structured version   Visualization version   GIF version

Theorem xmulval 13121
Description: Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))

Proof of Theorem xmulval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
21eqeq1d 2733 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 0 ↔ 𝐴 = 0))
3 simpr 484 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
43eqeq1d 2733 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = 0 ↔ 𝐵 = 0))
52, 4orbi12d 918 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
63breq2d 5103 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (0 < 𝑦 ↔ 0 < 𝐵))
71eqeq1d 2733 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = +∞ ↔ 𝐴 = +∞))
86, 7anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑦𝑥 = +∞) ↔ (0 < 𝐵𝐴 = +∞)))
93breq1d 5101 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 < 0 ↔ 𝐵 < 0))
101eqeq1d 2733 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = -∞ ↔ 𝐴 = -∞))
119, 10anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑦 < 0 ∧ 𝑥 = -∞) ↔ (𝐵 < 0 ∧ 𝐴 = -∞)))
128, 11orbi12d 918 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ↔ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞))))
131breq2d 5103 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (0 < 𝑥 ↔ 0 < 𝐴))
143eqeq1d 2733 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = +∞ ↔ 𝐵 = +∞))
1513, 14anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑥𝑦 = +∞) ↔ (0 < 𝐴𝐵 = +∞)))
161breq1d 5101 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 0 ↔ 𝐴 < 0))
173eqeq1d 2733 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = -∞ ↔ 𝐵 = -∞))
1816, 17anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 < 0 ∧ 𝑦 = -∞) ↔ (𝐴 < 0 ∧ 𝐵 = -∞)))
1915, 18orbi12d 918 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ↔ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
2012, 19orbi12d 918 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))) ↔ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))))
216, 10anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑦𝑥 = -∞) ↔ (0 < 𝐵𝐴 = -∞)))
229, 7anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑦 < 0 ∧ 𝑥 = +∞) ↔ (𝐵 < 0 ∧ 𝐴 = +∞)))
2321, 22orbi12d 918 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ↔ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞))))
2413, 17anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑥𝑦 = -∞) ↔ (0 < 𝐴𝐵 = -∞)))
2516, 14anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 < 0 ∧ 𝑦 = +∞) ↔ (𝐴 < 0 ∧ 𝐵 = +∞)))
2624, 25orbi12d 918 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ↔ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
2723, 26orbi12d 918 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))) ↔ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
28 oveq12 7355 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 · 𝑦) = (𝐴 · 𝐵))
2927, 28ifbieq2d 4502 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
3020, 29ifbieq2d 4502 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))) = if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
315, 30ifbieq2d 4502 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
32 df-xmul 13010 . 2 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
33 c0ex 11103 . . 3 0 ∈ V
34 pnfex 11162 . . . 4 +∞ ∈ V
35 mnfxr 11166 . . . . . 6 -∞ ∈ ℝ*
3635elexi 3459 . . . . 5 -∞ ∈ V
37 ovex 7379 . . . . 5 (𝐴 · 𝐵) ∈ V
3836, 37ifex 4526 . . . 4 if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) ∈ V
3934, 38ifex 4526 . . 3 if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) ∈ V
4033, 39ifex 4526 . 2 if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) ∈ V
4131, 32, 40ovmpoa 7501 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  ifcif 4475   class class class wbr 5091  (class class class)co 7346  0cc0 11003   · cmul 11008  +∞cpnf 11140  -∞cmnf 11141  *cxr 11142   < clt 11143   ·e cxmu 13007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-mulcl 11065  ax-i2m1 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-pnf 11145  df-mnf 11146  df-xr 11147  df-xmul 13010
This theorem is referenced by:  xmulcom  13162  xmul01  13163  xmulneg1  13165  rexmul  13167  xmulpnf1  13170
  Copyright terms: Public domain W3C validator