| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | 
| 2 | 1 | eqeq1d 2738 | . . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 0 ↔ 𝐴 = 0)) | 
| 3 |  | simpr 484 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | 
| 4 | 3 | eqeq1d 2738 | . . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = 0 ↔ 𝐵 = 0)) | 
| 5 | 2, 4 | orbi12d 918 | . . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | 
| 6 | 3 | breq2d 5154 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (0 < 𝑦 ↔ 0 < 𝐵)) | 
| 7 | 1 | eqeq1d 2738 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = +∞ ↔ 𝐴 = +∞)) | 
| 8 | 6, 7 | anbi12d 632 | . . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((0 < 𝑦 ∧ 𝑥 = +∞) ↔ (0 < 𝐵 ∧ 𝐴 = +∞))) | 
| 9 | 3 | breq1d 5152 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 < 0 ↔ 𝐵 < 0)) | 
| 10 | 1 | eqeq1d 2738 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = -∞ ↔ 𝐴 = -∞)) | 
| 11 | 9, 10 | anbi12d 632 | . . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑦 < 0 ∧ 𝑥 = -∞) ↔ (𝐵 < 0 ∧ 𝐴 = -∞))) | 
| 12 | 8, 11 | orbi12d 918 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ↔ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)))) | 
| 13 | 1 | breq2d 5154 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (0 < 𝑥 ↔ 0 < 𝐴)) | 
| 14 | 3 | eqeq1d 2738 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = +∞ ↔ 𝐵 = +∞)) | 
| 15 | 13, 14 | anbi12d 632 | . . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((0 < 𝑥 ∧ 𝑦 = +∞) ↔ (0 < 𝐴 ∧ 𝐵 = +∞))) | 
| 16 | 1 | breq1d 5152 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 < 0 ↔ 𝐴 < 0)) | 
| 17 | 3 | eqeq1d 2738 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = -∞ ↔ 𝐵 = -∞)) | 
| 18 | 16, 17 | anbi12d 632 | . . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 < 0 ∧ 𝑦 = -∞) ↔ (𝐴 < 0 ∧ 𝐵 = -∞))) | 
| 19 | 15, 18 | orbi12d 918 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ↔ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) | 
| 20 | 12, 19 | orbi12d 918 | . . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))) ↔ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))) | 
| 21 | 6, 10 | anbi12d 632 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((0 < 𝑦 ∧ 𝑥 = -∞) ↔ (0 < 𝐵 ∧ 𝐴 = -∞))) | 
| 22 | 9, 7 | anbi12d 632 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑦 < 0 ∧ 𝑥 = +∞) ↔ (𝐵 < 0 ∧ 𝐴 = +∞))) | 
| 23 | 21, 22 | orbi12d 918 | . . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ↔ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) | 
| 24 | 13, 17 | anbi12d 632 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((0 < 𝑥 ∧ 𝑦 = -∞) ↔ (0 < 𝐴 ∧ 𝐵 = -∞))) | 
| 25 | 16, 14 | anbi12d 632 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 < 0 ∧ 𝑦 = +∞) ↔ (𝐴 < 0 ∧ 𝐵 = +∞))) | 
| 26 | 24, 25 | orbi12d 918 | . . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ↔ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) | 
| 27 | 23, 26 | orbi12d 918 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))) ↔ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) | 
| 28 |  | oveq12 7441 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 · 𝑦) = (𝐴 · 𝐵)) | 
| 29 | 27, 28 | ifbieq2d 4551 | . . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)) = if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) | 
| 30 | 20, 29 | ifbieq2d 4551 | . . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if((((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))) = if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) | 
| 31 | 5, 30 | ifbieq2d 4551 | . 2
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | 
| 32 |  | df-xmul 13157 | . 2
⊢ 
·e = (𝑥
∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) | 
| 33 |  | c0ex 11256 | . . 3
⊢ 0 ∈
V | 
| 34 |  | pnfex 11315 | . . . 4
⊢ +∞
∈ V | 
| 35 |  | mnfxr 11319 | . . . . . 6
⊢ -∞
∈ ℝ* | 
| 36 | 35 | elexi 3502 | . . . . 5
⊢ -∞
∈ V | 
| 37 |  | ovex 7465 | . . . . 5
⊢ (𝐴 · 𝐵) ∈ V | 
| 38 | 36, 37 | ifex 4575 | . . . 4
⊢ if((((0
< 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) ∈ V | 
| 39 | 34, 38 | ifex 4575 | . . 3
⊢ if((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) ∈ V | 
| 40 | 33, 39 | ifex 4575 | . 2
⊢ if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) ∈ V | 
| 41 | 31, 32, 40 | ovmpoa 7589 | 1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) |