Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-z | Structured version Visualization version GIF version |
Description: Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
df-z | ⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cz 12249 | . 2 class ℤ | |
2 | vn | . . . . . 6 setvar 𝑛 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑛 |
4 | cc0 10802 | . . . . 5 class 0 | |
5 | 3, 4 | wceq 1539 | . . . 4 wff 𝑛 = 0 |
6 | cn 11903 | . . . . 5 class ℕ | |
7 | 3, 6 | wcel 2108 | . . . 4 wff 𝑛 ∈ ℕ |
8 | 3 | cneg 11136 | . . . . 5 class -𝑛 |
9 | 8, 6 | wcel 2108 | . . . 4 wff -𝑛 ∈ ℕ |
10 | 5, 7, 9 | w3o 1084 | . . 3 wff (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ) |
11 | cr 10801 | . . 3 class ℝ | |
12 | 10, 2, 11 | crab 3067 | . 2 class {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} |
13 | 1, 12 | wceq 1539 | 1 wff ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} |
Colors of variables: wff setvar class |
This definition is referenced by: elz 12251 |
Copyright terms: Public domain | W3C validator |