MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elz Structured version   Visualization version   GIF version

Theorem elz 12584
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elz (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))

Proof of Theorem elz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2731 . . 3 (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0))
2 eleq1 2816 . . 3 (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ))
3 negeq 11476 . . . 4 (𝑥 = 𝑁 → -𝑥 = -𝑁)
43eleq1d 2813 . . 3 (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ))
51, 2, 43orbi123d 1432 . 2 (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
6 df-z 12583 . 2 ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)}
75, 6elrab2 3683 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3o 1084   = wceq 1534  wcel 2099  cr 11131  0cc0 11132  -cneg 11469  cn 12236  cz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-ov 7417  df-neg 11471  df-z 12583
This theorem is referenced by:  nnnegz  12585  zre  12586  elnnz  12592  0z  12593  elznn0nn  12596  elznn0  12597  elznn  12598  nnz  12603  znegcl  12621  zeo  12672  addmodlteq  13937  zabsle1  27222  ostthlem1  27553  ostth3  27564  elzdif0  33571  qqhval2lem  33572  exp11d  41857
  Copyright terms: Public domain W3C validator