| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elz | Structured version Visualization version GIF version | ||
| Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| elz | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2737 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0)) | |
| 2 | eleq1 2821 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
| 3 | negeq 11363 | . . . 4 ⊢ (𝑥 = 𝑁 → -𝑥 = -𝑁) | |
| 4 | 3 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ)) |
| 5 | 1, 2, 4 | 3orbi123d 1437 | . 2 ⊢ (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| 6 | df-z 12480 | . 2 ⊢ ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)} | |
| 7 | 5, 6 | elrab2 3646 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1541 ∈ wcel 2113 ℝcr 11016 0cc0 11017 -cneg 11356 ℕcn 12136 ℤcz 12479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-neg 11358 df-z 12480 |
| This theorem is referenced by: nnnegz 12482 zre 12483 elnnz 12489 0z 12490 elznn0nn 12493 elznn0 12494 elznn 12495 nnz 12500 znegcl 12517 zeo 12569 addmodlteq 13860 zabsle1 27254 ostthlem1 27585 ostth3 27596 elzdif0 34065 qqhval2lem 34066 exp11d 42496 |
| Copyright terms: Public domain | W3C validator |