Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elz | Structured version Visualization version GIF version |
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elz | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2743 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0)) | |
2 | eleq1 2827 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
3 | negeq 11196 | . . . 4 ⊢ (𝑥 = 𝑁 → -𝑥 = -𝑁) | |
4 | 3 | eleq1d 2824 | . . 3 ⊢ (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ)) |
5 | 1, 2, 4 | 3orbi123d 1433 | . 2 ⊢ (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
6 | df-z 12303 | . 2 ⊢ ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)} | |
7 | 5, 6 | elrab2 3628 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ w3o 1084 = wceq 1541 ∈ wcel 2109 ℝcr 10854 0cc0 10855 -cneg 11189 ℕcn 11956 ℤcz 12302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-neg 11191 df-z 12303 |
This theorem is referenced by: nnnegz 12305 zre 12306 elnnz 12312 0z 12313 elznn0nn 12316 elznn0 12317 elznn 12318 nnssz 12323 znegcl 12338 zeo 12389 addmodlteq 13647 zabsle1 26425 ostthlem1 26756 ostth3 26767 elzdif0 31909 qqhval2lem 31910 exp11d 40305 |
Copyright terms: Public domain | W3C validator |