![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elz | Structured version Visualization version GIF version |
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elz | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2729 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0)) | |
2 | eleq1 2813 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
3 | negeq 11484 | . . . 4 ⊢ (𝑥 = 𝑁 → -𝑥 = -𝑁) | |
4 | 3 | eleq1d 2810 | . . 3 ⊢ (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ)) |
5 | 1, 2, 4 | 3orbi123d 1431 | . 2 ⊢ (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
6 | df-z 12592 | . 2 ⊢ ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)} | |
7 | 5, 6 | elrab2 3682 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 ℝcr 11139 0cc0 11140 -cneg 11477 ℕcn 12245 ℤcz 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 df-neg 11479 df-z 12592 |
This theorem is referenced by: nnnegz 12594 zre 12595 elnnz 12601 0z 12602 elznn0nn 12605 elznn0 12606 elznn 12607 nnz 12612 znegcl 12630 zeo 12681 addmodlteq 13947 zabsle1 27274 ostthlem1 27605 ostth3 27616 elzdif0 33709 qqhval2lem 33710 exp11d 42017 |
Copyright terms: Public domain | W3C validator |