Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elz | Structured version Visualization version GIF version |
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elz | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0)) | |
2 | eleq1 2826 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
3 | negeq 11213 | . . . 4 ⊢ (𝑥 = 𝑁 → -𝑥 = -𝑁) | |
4 | 3 | eleq1d 2823 | . . 3 ⊢ (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ)) |
5 | 1, 2, 4 | 3orbi123d 1434 | . 2 ⊢ (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
6 | df-z 12320 | . 2 ⊢ ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)} | |
7 | 5, 6 | elrab2 3627 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 ℝcr 10870 0cc0 10871 -cneg 11206 ℕcn 11973 ℤcz 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-neg 11208 df-z 12320 |
This theorem is referenced by: nnnegz 12322 zre 12323 elnnz 12329 0z 12330 elznn0nn 12333 elznn0 12334 elznn 12335 nnssz 12340 znegcl 12355 zeo 12406 addmodlteq 13666 zabsle1 26444 ostthlem1 26775 ostth3 26786 elzdif0 31930 qqhval2lem 31931 exp11d 40325 |
Copyright terms: Public domain | W3C validator |