| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elz | Structured version Visualization version GIF version | ||
| Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| elz | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0)) | |
| 2 | eleq1 2816 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
| 3 | negeq 11374 | . . . 4 ⊢ (𝑥 = 𝑁 → -𝑥 = -𝑁) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ)) |
| 5 | 1, 2, 4 | 3orbi123d 1437 | . 2 ⊢ (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| 6 | df-z 12491 | . 2 ⊢ ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)} | |
| 7 | 5, 6 | elrab2 3653 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ℝcr 11027 0cc0 11028 -cneg 11367 ℕcn 12147 ℤcz 12490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-neg 11369 df-z 12491 |
| This theorem is referenced by: nnnegz 12493 zre 12494 elnnz 12500 0z 12501 elznn0nn 12504 elznn0 12505 elznn 12506 nnz 12511 znegcl 12529 zeo 12581 addmodlteq 13872 zabsle1 27224 ostthlem1 27555 ostth3 27566 elzdif0 33966 qqhval2lem 33967 exp11d 42319 |
| Copyright terms: Public domain | W3C validator |