MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elz Structured version   Visualization version   GIF version

Theorem elz 12593
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elz (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))

Proof of Theorem elz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2729 . . 3 (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0))
2 eleq1 2813 . . 3 (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ))
3 negeq 11484 . . . 4 (𝑥 = 𝑁 → -𝑥 = -𝑁)
43eleq1d 2810 . . 3 (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ))
51, 2, 43orbi123d 1431 . 2 (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
6 df-z 12592 . 2 ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)}
75, 6elrab2 3682 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3o 1083   = wceq 1533  wcel 2098  cr 11139  0cc0 11140  -cneg 11477  cn 12245  cz 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422  df-neg 11479  df-z 12592
This theorem is referenced by:  nnnegz  12594  zre  12595  elnnz  12601  0z  12602  elznn0nn  12605  elznn0  12606  elznn  12607  nnz  12612  znegcl  12630  zeo  12681  addmodlteq  13947  zabsle1  27274  ostthlem1  27605  ostth3  27616  elzdif0  33709  qqhval2lem  33710  exp11d  42017
  Copyright terms: Public domain W3C validator