| Metamath
Proof Explorer Theorem List (p. 126 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nnzd 12501 | A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
| Theorem | nnzi 12502 | A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝑁 ∈ ℤ | ||
| Theorem | nn0zi 12503 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ∈ ℤ | ||
| Theorem | elnnz1 12504 | Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | ||
| Theorem | znnnlt1 12505 | An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1)) | ||
| Theorem | nnzrab 12506 | Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ℕ = {𝑥 ∈ ℤ ∣ 1 ≤ 𝑥} | ||
| Theorem | nn0zrab 12507 | Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ℕ0 = {𝑥 ∈ ℤ ∣ 0 ≤ 𝑥} | ||
| Theorem | 1z 12508 | One is an integer. (Contributed by NM, 10-May-2004.) |
| ⊢ 1 ∈ ℤ | ||
| Theorem | 1zzd 12509 | One is an integer, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℤ) | ||
| Theorem | 2z 12510 | 2 is an integer. (Contributed by NM, 10-May-2004.) |
| ⊢ 2 ∈ ℤ | ||
| Theorem | 3z 12511 | 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 3 ∈ ℤ | ||
| Theorem | 4z 12512 | 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
| ⊢ 4 ∈ ℤ | ||
| Theorem | znegcl 12513 | Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | ||
| Theorem | neg1z 12514 | -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ -1 ∈ ℤ | ||
| Theorem | znegclb 12515 | A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℤ ↔ -𝐴 ∈ ℤ)) | ||
| Theorem | nn0negz 12516 | The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | ||
| Theorem | nn0negzi 12517 | The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ -𝑁 ∈ ℤ | ||
| Theorem | zaddcl 12518 | Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | ||
| Theorem | peano2z 12519 | Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | ||
| Theorem | zsubcl 12520 | Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | ||
| Theorem | peano2zm 12521 | "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | ||
| Theorem | zletr 12522 | Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
| ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) | ||
| Theorem | zrevaddcl 12523 | Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) | ||
| Theorem | znnsub 12524 | The positive difference of unequal integers is a positive integer. (Generalization of nnsub 12176.) (Contributed by NM, 11-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | ||
| Theorem | znn0sub 12525 | The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 12438.) (Contributed by NM, 14-Jul-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
| Theorem | nzadd 12526 | The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) | ||
| Theorem | zmulcl 12527 | Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | ||
| Theorem | zltp1le 12528 | Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | zleltp1 12529 | Integer ordering relation. (Contributed by NM, 10-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
| Theorem | zlem1lt 12530 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | zltlem1 12531 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | zltlem1d 12532 | Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | zgt0ge1 12533 | An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.) |
| ⊢ (𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍)) | ||
| Theorem | nnleltp1 12534 | Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ≤ 𝐵 ↔ 𝐴 < (𝐵 + 1))) | ||
| Theorem | nnltp1le 12535 | Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | ||
| Theorem | nnaddm1cl 12536 | Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) | ||
| Theorem | nn0ltp1le 12537 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | nn0leltp1 12538 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
| Theorem | nn0ltlem1 12539 | Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | nn0sub2 12540 | Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | ||
| Theorem | nn0lt10b 12541 | A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | ||
| Theorem | nn0lt2 12542 | A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) | ||
| Theorem | nn0le2is012 12543 | A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | ||
| Theorem | nn0lem1lt 12544 | Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | nnlem1lt 12545 | Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | nnltlem1 12546 | Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | nnm1ge0 12547 | A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.) |
| ⊢ (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1)) | ||
| Theorem | nn0ge0div 12548 | Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿)) | ||
| Theorem | zdiv 12549* | Two ways to express "𝑀 divides 𝑁". (Contributed by NM, 3-Oct-2008.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | ||
| Theorem | zdivadd 12550 | Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it divides 𝐴 + 𝐵. (Contributed by NM, 3-Oct-2008.) |
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ) | ||
| Theorem | zdivmul 12551 | Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.) |
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) | ||
| Theorem | zextle 12552* | An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) | ||
| Theorem | zextlt 12553* | An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) | ||
| Theorem | recnz 12554 | The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ) | ||
| Theorem | btwnnz 12555 | A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ) | ||
| Theorem | gtndiv 12556 | A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) | ||
| Theorem | halfnz 12557 | One-half is not an integer. (Contributed by NM, 31-Jul-2004.) |
| ⊢ ¬ (1 / 2) ∈ ℤ | ||
| Theorem | 3halfnz 12558 | Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
| ⊢ ¬ (3 / 2) ∈ ℤ | ||
| Theorem | suprzcl 12559* | The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
| Theorem | prime 12560* | Two ways to express "𝐴 is a prime number (or 1)". See also isprm 16586. (Contributed by NM, 4-May-2005.) |
| ⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) | ||
| Theorem | msqznn 12561 | The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ) | ||
| Theorem | zneo 12562 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) | ||
| Theorem | nneo 12563 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
| Theorem | nneoi 12564 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ) | ||
| Theorem | zeo 12565 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
| Theorem | zeo2 12566 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
| Theorem | peano2uz2 12567* | Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) | ||
| Theorem | peano5uzi 12568* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.) |
| ⊢ 𝑁 ∈ ℤ ⇒ ⊢ ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴) | ||
| Theorem | peano5uzti 12569* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴)) | ||
| Theorem | dfuzi 12570* | An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 12145 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
| ⊢ 𝑁 ∈ ℤ ⇒ ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
| Theorem | uzind 12571* | Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.) |
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) | ||
| Theorem | uzind2 12572* | Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
| ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) | ||
| Theorem | uzind3 12573* | Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.) |
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) | ||
| Theorem | nn0ind 12574* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
| Theorem | nn0indALT 12575* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either nn0ind 12574 or nn0indALT 12575 may be used; see comment for nnind 12150. (Contributed by NM, 28-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
| Theorem | nn0indd 12576* | Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝑥 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → 𝜂) | ||
| Theorem | fzind 12577* | Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓) & ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) | ||
| Theorem | fnn0ind 12578* | Induction on the integers from 0 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ ℕ0 → 𝜓) & ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) → 𝜏) | ||
| Theorem | nn0ind-raph 12579* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
| Theorem | zindd 12580* | Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ (𝜁 → 𝜓) & ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) & ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) ⇒ ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) | ||
| Theorem | fzindd 12581* | Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.) |
| ⊢ (𝑥 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ∧ 𝜃) → 𝜏) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → 𝜂) | ||
| Theorem | btwnz 12582* | Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.) |
| ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) | ||
| Theorem | zred 12583 | An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | zcnd 12584 | An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | znegcld 12585 | Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℤ) | ||
| Theorem | peano2zd 12586 | Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) | ||
| Theorem | zaddcld 12587 | Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) | ||
| Theorem | zsubcld 12588 | Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) | ||
| Theorem | zmulcld 12589 | Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) | ||
| Theorem | znnn0nn 12590 | The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) | ||
| Theorem | zadd2cl 12591 | Increasing an integer by 2 results in an integer. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ) | ||
| Theorem | zriotaneg 12592* | The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.) |
| ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) | ||
| Theorem | suprfinzcl 12593 | The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.) |
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
| Syntax | cdc 12594 | Constant used for decimal constructor. |
| class ;𝐴𝐵 | ||
| Definition | df-dec 12595 | Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (;;;1000 + ;;;2000) = ;;;3000 1kp2ke3k 30428. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.) |
| ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | ||
| Theorem | 9p1e10 12596 | 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
| ⊢ (9 + 1) = ;10 | ||
| Theorem | dfdec10 12597 | Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
| ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | ||
| Theorem | decex 12598 | A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ ;𝐴𝐵 ∈ V | ||
| Theorem | deceq1 12599 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) | ||
| Theorem | deceq2 12600 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |