| Metamath
Proof Explorer Theorem List (p. 126 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fcdmnn0suppg 12501 | Version of fcdmnn0supp 12499 avoiding ax-rep 5234 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 5-Aug-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | ||
| Theorem | fcdmnn0fsuppg 12502 | Version of fcdmnn0fsupp 12500 avoiding ax-rep 5234 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 5-Aug-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) | ||
| Theorem | nnnn0d 12503 | A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0) | ||
| Theorem | nn0red 12504 | A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | nn0cnd 12505 | A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | nn0ge0d 12506 | A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
| Theorem | nn0addcld 12507 | Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) | ||
| Theorem | nn0mulcld 12508 | Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ0) | ||
| Theorem | nn0readdcl 12509 | Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | nn0n0n1ge2 12510 | A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) | ||
| Theorem | nn0n0n1ge2b 12511 | A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | ||
| Theorem | nn0ge2m1nn 12512 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) | ||
| Theorem | nn0ge2m1nn0 12513 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0) | ||
| Theorem | nn0nndivcl 12514 | Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ) | ||
The function values of the hash (set size) function are either nonnegative integers or positive infinity, see hashf 14303. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers ℝ*, see df-xr 11212. The definition of extended nonnegative integers can be used in Ramsey theory, because the Ramsey number is either a nonnegative integer or plus infinity, see ramcl2 16987, or for the degree of polynomials, see mdegcl 25974, or for the degree of vertices in graph theory, see vtxdgf 29399. | ||
| Syntax | cxnn0 12515 | The set of extended nonnegative integers. |
| class ℕ0* | ||
| Definition | df-xnn0 12516 | Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers ℝ*, see df-xr 11212. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | ||
| Theorem | elxnn0 12517 | An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | ||
| Theorem | nn0ssxnn0 12518 | The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ℕ0 ⊆ ℕ0* | ||
| Theorem | nn0xnn0 12519 | A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) | ||
| Theorem | xnn0xr 12520 | An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | ||
| Theorem | 0xnn0 12521 | Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| ⊢ 0 ∈ ℕ0* | ||
| Theorem | pnf0xnn0 12522 | Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| ⊢ +∞ ∈ ℕ0* | ||
| Theorem | nn0nepnf 12523 | No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) | ||
| Theorem | nn0xnn0d 12524 | A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0*) | ||
| Theorem | nn0nepnfd 12525 | No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
| Theorem | xnn0nemnf 12526 | No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) | ||
| Theorem | xnn0xrnemnf 12527 | The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | ||
| Theorem | xnn0nnn0pnf 12528 | An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | ||
| Syntax | cz 12529 | Extend class notation to include the class of integers. |
| class ℤ | ||
| Definition | df-z 12530 | Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.) |
| ⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} | ||
| Theorem | elz 12531 | Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | ||
| Theorem | nnnegz 12532 | The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.) |
| ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | ||
| Theorem | zre 12533 | An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | ||
| Theorem | zcn 12534 | An integer is a complex number. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | ||
| Theorem | zrei 12535 | An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
| ⊢ 𝐴 ∈ ℤ ⇒ ⊢ 𝐴 ∈ ℝ | ||
| Theorem | zssre 12536 | The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℤ ⊆ ℝ | ||
| Theorem | zsscn 12537 | The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℤ ⊆ ℂ | ||
| Theorem | zex 12538 | The set of integers exists. See also zexALT 12549. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℤ ∈ V | ||
| Theorem | elnnz 12539 | Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | ||
| Theorem | 0z 12540 | Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| ⊢ 0 ∈ ℤ | ||
| Theorem | 0zd 12541 | Zero is an integer, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℤ) | ||
| Theorem | elnn0z 12542 | Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | ||
| Theorem | elznn0nn 12543 | Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | ||
| Theorem | elznn0 12544 | Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | ||
| Theorem | elznn 12545 | Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) | ||
| Theorem | zle0orge1 12546 | There is no integer in the open unit interval, i.e., an integer is either less than or equal to 0 or greater than or equal to 1. (Contributed by AV, 4-Jun-2023.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ≤ 0 ∨ 1 ≤ 𝑍)) | ||
| Theorem | elz2 12547* | Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) | ||
| Theorem | dfz2 12548 | Alternative definition of the integers, based on elz2 12547. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ ℤ = ( − “ (ℕ × ℕ)) | ||
| Theorem | zexALT 12549 | Alternate proof of zex 12538. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℤ ∈ V | ||
| Theorem | nnz 12550 | A positive integer is an integer. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
| ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
| Theorem | nnssz 12551 | Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) |
| ⊢ ℕ ⊆ ℤ | ||
| Theorem | nn0ssz 12552 | Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
| ⊢ ℕ0 ⊆ ℤ | ||
| Theorem | nnzOLD 12553 | Obsolete version of nnz 12550 as of 1-Feb-2025. (Contributed by NM, 9-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
| Theorem | nn0z 12554 | A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | ||
| Theorem | nn0zd 12555 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
| Theorem | nnzd 12556 | A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
| Theorem | nnzi 12557 | A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝑁 ∈ ℤ | ||
| Theorem | nn0zi 12558 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ∈ ℤ | ||
| Theorem | elnnz1 12559 | Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | ||
| Theorem | znnnlt1 12560 | An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1)) | ||
| Theorem | nnzrab 12561 | Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ℕ = {𝑥 ∈ ℤ ∣ 1 ≤ 𝑥} | ||
| Theorem | nn0zrab 12562 | Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ℕ0 = {𝑥 ∈ ℤ ∣ 0 ≤ 𝑥} | ||
| Theorem | 1z 12563 | One is an integer. (Contributed by NM, 10-May-2004.) |
| ⊢ 1 ∈ ℤ | ||
| Theorem | 1zzd 12564 | One is an integer, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℤ) | ||
| Theorem | 2z 12565 | 2 is an integer. (Contributed by NM, 10-May-2004.) |
| ⊢ 2 ∈ ℤ | ||
| Theorem | 3z 12566 | 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 3 ∈ ℤ | ||
| Theorem | 4z 12567 | 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
| ⊢ 4 ∈ ℤ | ||
| Theorem | znegcl 12568 | Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | ||
| Theorem | neg1z 12569 | -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ -1 ∈ ℤ | ||
| Theorem | znegclb 12570 | A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℤ ↔ -𝐴 ∈ ℤ)) | ||
| Theorem | nn0negz 12571 | The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | ||
| Theorem | nn0negzi 12572 | The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ -𝑁 ∈ ℤ | ||
| Theorem | zaddcl 12573 | Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | ||
| Theorem | peano2z 12574 | Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | ||
| Theorem | zsubcl 12575 | Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | ||
| Theorem | peano2zm 12576 | "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | ||
| Theorem | zletr 12577 | Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
| ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) | ||
| Theorem | zrevaddcl 12578 | Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) | ||
| Theorem | znnsub 12579 | The positive difference of unequal integers is a positive integer. (Generalization of nnsub 12230.) (Contributed by NM, 11-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | ||
| Theorem | znn0sub 12580 | The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 12492.) (Contributed by NM, 14-Jul-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
| Theorem | nzadd 12581 | The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) | ||
| Theorem | zmulcl 12582 | Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | ||
| Theorem | zltp1le 12583 | Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | zleltp1 12584 | Integer ordering relation. (Contributed by NM, 10-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
| Theorem | zlem1lt 12585 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | zltlem1 12586 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | zltlem1d 12587 | Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | zgt0ge1 12588 | An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.) |
| ⊢ (𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍)) | ||
| Theorem | nnleltp1 12589 | Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ≤ 𝐵 ↔ 𝐴 < (𝐵 + 1))) | ||
| Theorem | nnltp1le 12590 | Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | ||
| Theorem | nnaddm1cl 12591 | Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) | ||
| Theorem | nn0ltp1le 12592 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | nn0leltp1 12593 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
| Theorem | nn0ltlem1 12594 | Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | nn0sub2 12595 | Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | ||
| Theorem | nn0lt10b 12596 | A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | ||
| Theorem | nn0lt2 12597 | A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) | ||
| Theorem | nn0le2is012 12598 | A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | ||
| Theorem | nn0lem1lt 12599 | Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | nnlem1lt 12600 | Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |