| Metamath
Proof Explorer Theorem List (p. 126 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nn0negleid 12501 | A nonnegative integer is greater than or equal to its negative. (Contributed by AV, 13-Aug-2021.) |
| ⊢ (𝐴 ∈ ℕ0 → -𝐴 ≤ 𝐴) | ||
| Theorem | difgtsumgt 12502 | If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) | ||
| Theorem | nn0le2x 12503 | A nonnegative integer is less than or equal to twice itself. Generalization of nn0le2xi 12504. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by AV, 9-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ (2 · 𝑁)) | ||
| Theorem | nn0le2xi 12504 | A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by AV, 9-Sep-2025.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ≤ (2 · 𝑁) | ||
| Theorem | nn0lele2xi 12505 | 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑁 ≤ 𝑀 → 𝑁 ≤ (2 · 𝑀)) | ||
| Theorem | fcdmnn0supp 12506 | Two ways to write the support of a function into ℕ0. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by AV, 7-Jul-2019.) |
| ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | ||
| Theorem | fcdmnn0fsupp 12507 | A function into ℕ0 is finitely supported iff its support is finite. (Contributed by AV, 8-Jul-2019.) |
| ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) | ||
| Theorem | fcdmnn0suppg 12508 | Version of fcdmnn0supp 12506 avoiding ax-rep 5237 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 5-Aug-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | ||
| Theorem | fcdmnn0fsuppg 12509 | Version of fcdmnn0fsupp 12507 avoiding ax-rep 5237 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 5-Aug-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) | ||
| Theorem | nnnn0d 12510 | A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0) | ||
| Theorem | nn0red 12511 | A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | nn0cnd 12512 | A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | nn0ge0d 12513 | A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
| Theorem | nn0addcld 12514 | Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) | ||
| Theorem | nn0mulcld 12515 | Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ0) | ||
| Theorem | nn0readdcl 12516 | Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | nn0n0n1ge2 12517 | A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) | ||
| Theorem | nn0n0n1ge2b 12518 | A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | ||
| Theorem | nn0ge2m1nn 12519 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) | ||
| Theorem | nn0ge2m1nn0 12520 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0) | ||
| Theorem | nn0nndivcl 12521 | Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ) | ||
The function values of the hash (set size) function are either nonnegative integers or positive infinity, see hashf 14310. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers ℝ*, see df-xr 11219. The definition of extended nonnegative integers can be used in Ramsey theory, because the Ramsey number is either a nonnegative integer or plus infinity, see ramcl2 16994, or for the degree of polynomials, see mdegcl 25981, or for the degree of vertices in graph theory, see vtxdgf 29406. | ||
| Syntax | cxnn0 12522 | The set of extended nonnegative integers. |
| class ℕ0* | ||
| Definition | df-xnn0 12523 | Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers ℝ*, see df-xr 11219. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | ||
| Theorem | elxnn0 12524 | An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | ||
| Theorem | nn0ssxnn0 12525 | The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ℕ0 ⊆ ℕ0* | ||
| Theorem | nn0xnn0 12526 | A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) | ||
| Theorem | xnn0xr 12527 | An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | ||
| Theorem | 0xnn0 12528 | Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| ⊢ 0 ∈ ℕ0* | ||
| Theorem | pnf0xnn0 12529 | Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| ⊢ +∞ ∈ ℕ0* | ||
| Theorem | nn0nepnf 12530 | No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) | ||
| Theorem | nn0xnn0d 12531 | A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0*) | ||
| Theorem | nn0nepnfd 12532 | No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
| Theorem | xnn0nemnf 12533 | No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) | ||
| Theorem | xnn0xrnemnf 12534 | The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | ||
| Theorem | xnn0nnn0pnf 12535 | An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | ||
| Syntax | cz 12536 | Extend class notation to include the class of integers. |
| class ℤ | ||
| Definition | df-z 12537 | Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.) |
| ⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} | ||
| Theorem | elz 12538 | Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | ||
| Theorem | nnnegz 12539 | The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.) |
| ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | ||
| Theorem | zre 12540 | An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | ||
| Theorem | zcn 12541 | An integer is a complex number. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | ||
| Theorem | zrei 12542 | An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
| ⊢ 𝐴 ∈ ℤ ⇒ ⊢ 𝐴 ∈ ℝ | ||
| Theorem | zssre 12543 | The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℤ ⊆ ℝ | ||
| Theorem | zsscn 12544 | The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℤ ⊆ ℂ | ||
| Theorem | zex 12545 | The set of integers exists. See also zexALT 12556. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℤ ∈ V | ||
| Theorem | elnnz 12546 | Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | ||
| Theorem | 0z 12547 | Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| ⊢ 0 ∈ ℤ | ||
| Theorem | 0zd 12548 | Zero is an integer, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℤ) | ||
| Theorem | elnn0z 12549 | Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | ||
| Theorem | elznn0nn 12550 | Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | ||
| Theorem | elznn0 12551 | Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | ||
| Theorem | elznn 12552 | Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) | ||
| Theorem | zle0orge1 12553 | There is no integer in the open unit interval, i.e., an integer is either less than or equal to 0 or greater than or equal to 1. (Contributed by AV, 4-Jun-2023.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ≤ 0 ∨ 1 ≤ 𝑍)) | ||
| Theorem | elz2 12554* | Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) | ||
| Theorem | dfz2 12555 | Alternative definition of the integers, based on elz2 12554. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ ℤ = ( − “ (ℕ × ℕ)) | ||
| Theorem | zexALT 12556 | Alternate proof of zex 12545. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℤ ∈ V | ||
| Theorem | nnz 12557 | A positive integer is an integer. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
| ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
| Theorem | nnssz 12558 | Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) |
| ⊢ ℕ ⊆ ℤ | ||
| Theorem | nn0ssz 12559 | Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
| ⊢ ℕ0 ⊆ ℤ | ||
| Theorem | nnzOLD 12560 | Obsolete version of nnz 12557 as of 1-Feb-2025. (Contributed by NM, 9-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
| Theorem | nn0z 12561 | A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | ||
| Theorem | nn0zd 12562 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
| Theorem | nnzd 12563 | A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
| Theorem | nnzi 12564 | A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝑁 ∈ ℤ | ||
| Theorem | nn0zi 12565 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ∈ ℤ | ||
| Theorem | elnnz1 12566 | Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | ||
| Theorem | znnnlt1 12567 | An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1)) | ||
| Theorem | nnzrab 12568 | Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ℕ = {𝑥 ∈ ℤ ∣ 1 ≤ 𝑥} | ||
| Theorem | nn0zrab 12569 | Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ℕ0 = {𝑥 ∈ ℤ ∣ 0 ≤ 𝑥} | ||
| Theorem | 1z 12570 | One is an integer. (Contributed by NM, 10-May-2004.) |
| ⊢ 1 ∈ ℤ | ||
| Theorem | 1zzd 12571 | One is an integer, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℤ) | ||
| Theorem | 2z 12572 | 2 is an integer. (Contributed by NM, 10-May-2004.) |
| ⊢ 2 ∈ ℤ | ||
| Theorem | 3z 12573 | 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 3 ∈ ℤ | ||
| Theorem | 4z 12574 | 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
| ⊢ 4 ∈ ℤ | ||
| Theorem | znegcl 12575 | Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | ||
| Theorem | neg1z 12576 | -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ -1 ∈ ℤ | ||
| Theorem | znegclb 12577 | A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℤ ↔ -𝐴 ∈ ℤ)) | ||
| Theorem | nn0negz 12578 | The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | ||
| Theorem | nn0negzi 12579 | The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ -𝑁 ∈ ℤ | ||
| Theorem | zaddcl 12580 | Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | ||
| Theorem | peano2z 12581 | Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | ||
| Theorem | zsubcl 12582 | Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | ||
| Theorem | peano2zm 12583 | "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | ||
| Theorem | zletr 12584 | Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
| ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) | ||
| Theorem | zrevaddcl 12585 | Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) | ||
| Theorem | znnsub 12586 | The positive difference of unequal integers is a positive integer. (Generalization of nnsub 12237.) (Contributed by NM, 11-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | ||
| Theorem | znn0sub 12587 | The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 12499.) (Contributed by NM, 14-Jul-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
| Theorem | nzadd 12588 | The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) | ||
| Theorem | zmulcl 12589 | Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | ||
| Theorem | zltp1le 12590 | Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | zleltp1 12591 | Integer ordering relation. (Contributed by NM, 10-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
| Theorem | zlem1lt 12592 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | zltlem1 12593 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | zltlem1d 12594 | Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | zgt0ge1 12595 | An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.) |
| ⊢ (𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍)) | ||
| Theorem | nnleltp1 12596 | Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ≤ 𝐵 ↔ 𝐴 < (𝐵 + 1))) | ||
| Theorem | nnltp1le 12597 | Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | ||
| Theorem | nnaddm1cl 12598 | Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) | ||
| Theorem | nn0ltp1le 12599 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | nn0leltp1 12600 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |