| Metamath
Proof Explorer Theorem List (p. 126 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elnn0 12501 | Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | ||
| Theorem | nnssnn0 12502 | Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ ℕ ⊆ ℕ0 | ||
| Theorem | nn0ssre 12503 | Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ ℕ0 ⊆ ℝ | ||
| Theorem | nn0sscn 12504 | Nonnegative integers are a subset of the complex numbers. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| ⊢ ℕ0 ⊆ ℂ | ||
| Theorem | nn0ex 12505 | The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
| ⊢ ℕ0 ∈ V | ||
| Theorem | nnnn0 12506 | A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) | ||
| Theorem | nnnn0i 12507 | A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝑁 ∈ ℕ0 | ||
| Theorem | nn0re 12508 | A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | ||
| Theorem | nn0cn 12509 | A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) | ||
| Theorem | nn0rei 12510 | A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 ∈ ℝ | ||
| Theorem | nn0cni 12511 | A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 ∈ ℂ | ||
| Theorem | dfn2 12512 | The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
| ⊢ ℕ = (ℕ0 ∖ {0}) | ||
| Theorem | elnnne0 12513 | The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | ||
| Theorem | 0nn0 12514 | 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 0 ∈ ℕ0 | ||
| Theorem | 1nn0 12515 | 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 1 ∈ ℕ0 | ||
| Theorem | 2nn0 12516 | 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 2 ∈ ℕ0 | ||
| Theorem | 3nn0 12517 | 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 3 ∈ ℕ0 | ||
| Theorem | 4nn0 12518 | 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 4 ∈ ℕ0 | ||
| Theorem | 5nn0 12519 | 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 5 ∈ ℕ0 | ||
| Theorem | 6nn0 12520 | 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 6 ∈ ℕ0 | ||
| Theorem | 7nn0 12521 | 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 7 ∈ ℕ0 | ||
| Theorem | 8nn0 12522 | 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 8 ∈ ℕ0 | ||
| Theorem | 9nn0 12523 | 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 9 ∈ ℕ0 | ||
| Theorem | nn0ge0 12524 | A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | ||
| Theorem | nn0nlt0 12525 | A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0) | ||
| Theorem | nn0ge0i 12526 | Nonnegative integers are nonnegative. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 0 ≤ 𝑁 | ||
| Theorem | nn0le0eq0 12527 | A nonnegative integer is less than or equal to zero iff it is equal to zero. (Contributed by NM, 9-Dec-2005.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0)) | ||
| Theorem | nn0p1gt0 12528 | A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) | ||
| Theorem | nnnn0addcl 12529 | A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) | ||
| Theorem | nn0nnaddcl 12530 | A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | ||
| Theorem | 0mnnnnn0 12531 | The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.) |
| ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) | ||
| Theorem | un0addcl 12532 | If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ 𝑇 = (𝑆 ∪ {0}) & ⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 + 𝑁) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ (𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) → (𝑀 + 𝑁) ∈ 𝑇) | ||
| Theorem | un0mulcl 12533 | If 𝑆 is closed under multiplication, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ 𝑇 = (𝑆 ∪ {0}) & ⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 · 𝑁) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ (𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) → (𝑀 · 𝑁) ∈ 𝑇) | ||
| Theorem | nn0addcl 12534 | Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) | ||
| Theorem | nn0mulcl 12535 | Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) | ||
| Theorem | nn0addcli 12536 | Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑀 + 𝑁) ∈ ℕ0 | ||
| Theorem | nn0mulcli 12537 | Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑀 · 𝑁) ∈ ℕ0 | ||
| Theorem | nn0p1nn 12538 | A nonnegative integer plus 1 is a positive integer. Strengthening of peano2nn 12250. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) | ||
| Theorem | peano2nn0 12539 | Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | ||
| Theorem | nnm1nn0 12540 | A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | ||
| Theorem | elnn0nn 12541 | The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ)) | ||
| Theorem | elnnnn0 12542 | The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) | ||
| Theorem | elnnnn0b 12543 | The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) | ||
| Theorem | elnnnn0c 12544 | The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | ||
| Theorem | nn0addge1 12545 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁)) | ||
| Theorem | nn0addge2 12546 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝑁 + 𝐴)) | ||
| Theorem | nn0addge1i 12547 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝐴 ≤ (𝐴 + 𝑁) | ||
| Theorem | nn0addge2i 12548 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝐴 ≤ (𝑁 + 𝐴) | ||
| Theorem | nn0sub 12549 | Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
| Theorem | ltsubnn0 12550 | Subtracting a nonnegative integer from a nonnegative integer which is greater than the first one results in a nonnegative integer. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐵 < 𝐴 → (𝐴 − 𝐵) ∈ ℕ0)) | ||
| Theorem | nn0negleid 12551 | A nonnegative integer is greater than or equal to its negative. (Contributed by AV, 13-Aug-2021.) |
| ⊢ (𝐴 ∈ ℕ0 → -𝐴 ≤ 𝐴) | ||
| Theorem | difgtsumgt 12552 | If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) | ||
| Theorem | nn0le2x 12553 | A nonnegative integer is less than or equal to twice itself. Generalization of nn0le2xi 12554. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by AV, 9-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ (2 · 𝑁)) | ||
| Theorem | nn0le2xi 12554 | A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by AV, 9-Sep-2025.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ≤ (2 · 𝑁) | ||
| Theorem | nn0lele2xi 12555 | 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑁 ≤ 𝑀 → 𝑁 ≤ (2 · 𝑀)) | ||
| Theorem | fcdmnn0supp 12556 | Two ways to write the support of a function into ℕ0. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by AV, 7-Jul-2019.) |
| ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | ||
| Theorem | fcdmnn0fsupp 12557 | A function into ℕ0 is finitely supported iff its support is finite. (Contributed by AV, 8-Jul-2019.) |
| ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) | ||
| Theorem | fcdmnn0suppg 12558 | Version of fcdmnn0supp 12556 avoiding ax-rep 5249 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 5-Aug-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | ||
| Theorem | fcdmnn0fsuppg 12559 | Version of fcdmnn0fsupp 12557 avoiding ax-rep 5249 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 5-Aug-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) | ||
| Theorem | nnnn0d 12560 | A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0) | ||
| Theorem | nn0red 12561 | A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | nn0cnd 12562 | A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | nn0ge0d 12563 | A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
| Theorem | nn0addcld 12564 | Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) | ||
| Theorem | nn0mulcld 12565 | Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ0) | ||
| Theorem | nn0readdcl 12566 | Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | nn0n0n1ge2 12567 | A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) | ||
| Theorem | nn0n0n1ge2b 12568 | A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | ||
| Theorem | nn0ge2m1nn 12569 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) | ||
| Theorem | nn0ge2m1nn0 12570 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0) | ||
| Theorem | nn0nndivcl 12571 | Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ) | ||
The function values of the hash (set size) function are either nonnegative integers or positive infinity, see hashf 14354. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers ℝ*, see df-xr 11271. The definition of extended nonnegative integers can be used in Ramsey theory, because the Ramsey number is either a nonnegative integer or plus infinity, see ramcl2 17034, or for the degree of polynomials, see mdegcl 26024, or for the degree of vertices in graph theory, see vtxdgf 29397. | ||
| Syntax | cxnn0 12572 | The set of extended nonnegative integers. |
| class ℕ0* | ||
| Definition | df-xnn0 12573 | Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers ℝ*, see df-xr 11271. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | ||
| Theorem | elxnn0 12574 | An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | ||
| Theorem | nn0ssxnn0 12575 | The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ℕ0 ⊆ ℕ0* | ||
| Theorem | nn0xnn0 12576 | A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) | ||
| Theorem | xnn0xr 12577 | An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | ||
| Theorem | 0xnn0 12578 | Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| ⊢ 0 ∈ ℕ0* | ||
| Theorem | pnf0xnn0 12579 | Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| ⊢ +∞ ∈ ℕ0* | ||
| Theorem | nn0nepnf 12580 | No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) | ||
| Theorem | nn0xnn0d 12581 | A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0*) | ||
| Theorem | nn0nepnfd 12582 | No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
| Theorem | xnn0nemnf 12583 | No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) | ||
| Theorem | xnn0xrnemnf 12584 | The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | ||
| Theorem | xnn0nnn0pnf 12585 | An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | ||
| Syntax | cz 12586 | Extend class notation to include the class of integers. |
| class ℤ | ||
| Definition | df-z 12587 | Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.) |
| ⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} | ||
| Theorem | elz 12588 | Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | ||
| Theorem | nnnegz 12589 | The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.) |
| ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | ||
| Theorem | zre 12590 | An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | ||
| Theorem | zcn 12591 | An integer is a complex number. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | ||
| Theorem | zrei 12592 | An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
| ⊢ 𝐴 ∈ ℤ ⇒ ⊢ 𝐴 ∈ ℝ | ||
| Theorem | zssre 12593 | The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℤ ⊆ ℝ | ||
| Theorem | zsscn 12594 | The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℤ ⊆ ℂ | ||
| Theorem | zex 12595 | The set of integers exists. See also zexALT 12606. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℤ ∈ V | ||
| Theorem | elnnz 12596 | Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | ||
| Theorem | 0z 12597 | Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| ⊢ 0 ∈ ℤ | ||
| Theorem | 0zd 12598 | Zero is an integer, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℤ) | ||
| Theorem | elnn0z 12599 | Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | ||
| Theorem | elznn0nn 12600 | Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |