| Metamath
Proof Explorer Theorem List (p. 126 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 0zd 12501 | Zero is an integer, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℤ) | ||
| Theorem | elnn0z 12502 | Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | ||
| Theorem | elznn0nn 12503 | Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | ||
| Theorem | elznn0 12504 | Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | ||
| Theorem | elznn 12505 | Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) | ||
| Theorem | zle0orge1 12506 | There is no integer in the open unit interval, i.e., an integer is either less than or equal to 0 or greater than or equal to 1. (Contributed by AV, 4-Jun-2023.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ≤ 0 ∨ 1 ≤ 𝑍)) | ||
| Theorem | elz2 12507* | Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) | ||
| Theorem | dfz2 12508 | Alternative definition of the integers, based on elz2 12507. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ ℤ = ( − “ (ℕ × ℕ)) | ||
| Theorem | zexALT 12509 | Alternate proof of zex 12498. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℤ ∈ V | ||
| Theorem | nnz 12510 | A positive integer is an integer. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
| ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
| Theorem | nnssz 12511 | Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) |
| ⊢ ℕ ⊆ ℤ | ||
| Theorem | nn0ssz 12512 | Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
| ⊢ ℕ0 ⊆ ℤ | ||
| Theorem | nnzOLD 12513 | Obsolete version of nnz 12510 as of 1-Feb-2025. (Contributed by NM, 9-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
| Theorem | nn0z 12514 | A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | ||
| Theorem | nn0zd 12515 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
| Theorem | nnzd 12516 | A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
| Theorem | nnzi 12517 | A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝑁 ∈ ℤ | ||
| Theorem | nn0zi 12518 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ∈ ℤ | ||
| Theorem | elnnz1 12519 | Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | ||
| Theorem | znnnlt1 12520 | An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1)) | ||
| Theorem | nnzrab 12521 | Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ℕ = {𝑥 ∈ ℤ ∣ 1 ≤ 𝑥} | ||
| Theorem | nn0zrab 12522 | Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ℕ0 = {𝑥 ∈ ℤ ∣ 0 ≤ 𝑥} | ||
| Theorem | 1z 12523 | One is an integer. (Contributed by NM, 10-May-2004.) |
| ⊢ 1 ∈ ℤ | ||
| Theorem | 1zzd 12524 | One is an integer, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℤ) | ||
| Theorem | 2z 12525 | 2 is an integer. (Contributed by NM, 10-May-2004.) |
| ⊢ 2 ∈ ℤ | ||
| Theorem | 3z 12526 | 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 3 ∈ ℤ | ||
| Theorem | 4z 12527 | 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
| ⊢ 4 ∈ ℤ | ||
| Theorem | znegcl 12528 | Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | ||
| Theorem | neg1z 12529 | -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ -1 ∈ ℤ | ||
| Theorem | znegclb 12530 | A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℤ ↔ -𝐴 ∈ ℤ)) | ||
| Theorem | nn0negz 12531 | The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
| ⊢ (𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | ||
| Theorem | nn0negzi 12532 | The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ -𝑁 ∈ ℤ | ||
| Theorem | zaddcl 12533 | Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | ||
| Theorem | peano2z 12534 | Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | ||
| Theorem | zsubcl 12535 | Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | ||
| Theorem | peano2zm 12536 | "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | ||
| Theorem | zletr 12537 | Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
| ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) | ||
| Theorem | zrevaddcl 12538 | Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) | ||
| Theorem | znnsub 12539 | The positive difference of unequal integers is a positive integer. (Generalization of nnsub 12190.) (Contributed by NM, 11-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | ||
| Theorem | znn0sub 12540 | The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 12452.) (Contributed by NM, 14-Jul-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
| Theorem | nzadd 12541 | The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) | ||
| Theorem | zmulcl 12542 | Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | ||
| Theorem | zltp1le 12543 | Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | zleltp1 12544 | Integer ordering relation. (Contributed by NM, 10-May-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
| Theorem | zlem1lt 12545 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | zltlem1 12546 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | zltlem1d 12547 | Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | zgt0ge1 12548 | An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.) |
| ⊢ (𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍)) | ||
| Theorem | nnleltp1 12549 | Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ≤ 𝐵 ↔ 𝐴 < (𝐵 + 1))) | ||
| Theorem | nnltp1le 12550 | Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | ||
| Theorem | nnaddm1cl 12551 | Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) | ||
| Theorem | nn0ltp1le 12552 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | nn0leltp1 12553 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
| Theorem | nn0ltlem1 12554 | Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | nn0sub2 12555 | Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | ||
| Theorem | nn0lt10b 12556 | A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | ||
| Theorem | nn0lt2 12557 | A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) | ||
| Theorem | nn0le2is012 12558 | A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | ||
| Theorem | nn0lem1lt 12559 | Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | nnlem1lt 12560 | Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | nnltlem1 12561 | Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
| Theorem | nnm1ge0 12562 | A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.) |
| ⊢ (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1)) | ||
| Theorem | nn0ge0div 12563 | Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿)) | ||
| Theorem | zdiv 12564* | Two ways to express "𝑀 divides 𝑁". (Contributed by NM, 3-Oct-2008.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | ||
| Theorem | zdivadd 12565 | Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it divides 𝐴 + 𝐵. (Contributed by NM, 3-Oct-2008.) |
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ) | ||
| Theorem | zdivmul 12566 | Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.) |
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) | ||
| Theorem | zextle 12567* | An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) | ||
| Theorem | zextlt 12568* | An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) | ||
| Theorem | recnz 12569 | The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ) | ||
| Theorem | btwnnz 12570 | A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ) | ||
| Theorem | gtndiv 12571 | A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) | ||
| Theorem | halfnz 12572 | One-half is not an integer. (Contributed by NM, 31-Jul-2004.) |
| ⊢ ¬ (1 / 2) ∈ ℤ | ||
| Theorem | 3halfnz 12573 | Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
| ⊢ ¬ (3 / 2) ∈ ℤ | ||
| Theorem | suprzcl 12574* | The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
| Theorem | prime 12575* | Two ways to express "𝐴 is a prime number (or 1)". See also isprm 16602. (Contributed by NM, 4-May-2005.) |
| ⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) | ||
| Theorem | msqznn 12576 | The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ) | ||
| Theorem | zneo 12577 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) | ||
| Theorem | nneo 12578 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
| Theorem | nneoi 12579 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ) | ||
| Theorem | zeo 12580 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
| Theorem | zeo2 12581 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
| Theorem | peano2uz2 12582* | Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) | ||
| Theorem | peano5uzi 12583* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.) |
| ⊢ 𝑁 ∈ ℤ ⇒ ⊢ ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴) | ||
| Theorem | peano5uzti 12584* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴)) | ||
| Theorem | dfuzi 12585* | An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 12159 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
| ⊢ 𝑁 ∈ ℤ ⇒ ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
| Theorem | uzind 12586* | Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.) |
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) | ||
| Theorem | uzind2 12587* | Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
| ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) | ||
| Theorem | uzind3 12588* | Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.) |
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) | ||
| Theorem | nn0ind 12589* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
| Theorem | nn0indALT 12590* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either nn0ind 12589 or nn0indALT 12590 may be used; see comment for nnind 12164. (Contributed by NM, 28-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
| Theorem | nn0indd 12591* | Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝑥 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → 𝜂) | ||
| Theorem | fzind 12592* | Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓) & ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) | ||
| Theorem | fnn0ind 12593* | Induction on the integers from 0 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ ℕ0 → 𝜓) & ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) → 𝜏) | ||
| Theorem | nn0ind-raph 12594* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
| Theorem | zindd 12595* | Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ (𝜁 → 𝜓) & ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) & ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) ⇒ ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) | ||
| Theorem | fzindd 12596* | Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.) |
| ⊢ (𝑥 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ∧ 𝜃) → 𝜏) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → 𝜂) | ||
| Theorem | btwnz 12597* | Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.) |
| ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) | ||
| Theorem | zred 12598 | An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | zcnd 12599 | An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | znegcld 12600 | Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℤ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |