Home | Metamath
Proof Explorer Theorem List (p. 126 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | decaddc 12501 | Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ 𝐹 ∈ ℕ0 & ⊢ (𝐵 + 𝐷) = ;1𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 | ||
Theorem | decaddc2 12502 | Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ (𝐵 + 𝐷) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸0 | ||
Theorem | decrmanc 12503 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑃 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
Theorem | decrmac 12504 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
Theorem | decaddm10 12505 | The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (;𝐴0 + ;𝐵0) = ;(𝐴 + 𝐵)0 | ||
Theorem | decaddi 12506 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐵 + 𝑁) = 𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 | ||
Theorem | decaddci 12507 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ 𝐶 ∈ ℕ0 & ⊢ (𝐵 + 𝑁) = ;1𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 | ||
Theorem | decaddci2 12508 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ (𝐵 + 𝑁) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷0 | ||
Theorem | decsubi 12509 | Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ (𝐵 − 𝑁) = 𝐶 ⇒ ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 | ||
Theorem | decmul1 12510 | The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) Remove hypothesis 𝐷 ∈ ℕ0. (Revised by Steven Nguyen, 7-Dec-2022.) |
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ (𝐴 · 𝑃) = 𝐶 & ⊢ (𝐵 · 𝑃) = 𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | ||
Theorem | decmul1c 12511 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 & ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | ||
Theorem | decmul2c 12512 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 & ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 ⇒ ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 | ||
Theorem | decmulnc 12513 | The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021.) |
⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (𝑁 · ;𝐴𝐵) = ;(𝑁 · 𝐴)(𝑁 · 𝐵) | ||
Theorem | 11multnc 12514 | The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑁 · ;11) = ;𝑁𝑁 | ||
Theorem | decmul10add 12515 | A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐸 = (𝑀 · 𝐴) & ⊢ 𝐹 = (𝑀 · 𝐵) ⇒ ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) | ||
Theorem | 6p5lem 12516 | Lemma for 6p5e11 12519 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐵 = (𝐷 + 1) & ⊢ 𝐶 = (𝐸 + 1) & ⊢ (𝐴 + 𝐷) = ;1𝐸 ⇒ ⊢ (𝐴 + 𝐵) = ;1𝐶 | ||
Theorem | 5p5e10 12517 | 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
⊢ (5 + 5) = ;10 | ||
Theorem | 6p4e10 12518 | 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
⊢ (6 + 4) = ;10 | ||
Theorem | 6p5e11 12519 | 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (6 + 5) = ;11 | ||
Theorem | 6p6e12 12520 | 6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (6 + 6) = ;12 | ||
Theorem | 7p3e10 12521 | 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
⊢ (7 + 3) = ;10 | ||
Theorem | 7p4e11 12522 | 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (7 + 4) = ;11 | ||
Theorem | 7p5e12 12523 | 7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 + 5) = ;12 | ||
Theorem | 7p6e13 12524 | 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 + 6) = ;13 | ||
Theorem | 7p7e14 12525 | 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 + 7) = ;14 | ||
Theorem | 8p2e10 12526 | 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
⊢ (8 + 2) = ;10 | ||
Theorem | 8p3e11 12527 | 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (8 + 3) = ;11 | ||
Theorem | 8p4e12 12528 | 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 4) = ;12 | ||
Theorem | 8p5e13 12529 | 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 5) = ;13 | ||
Theorem | 8p6e14 12530 | 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 6) = ;14 | ||
Theorem | 8p7e15 12531 | 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 7) = ;15 | ||
Theorem | 8p8e16 12532 | 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 8) = ;16 | ||
Theorem | 9p2e11 12533 | 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (9 + 2) = ;11 | ||
Theorem | 9p3e12 12534 | 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 3) = ;12 | ||
Theorem | 9p4e13 12535 | 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 4) = ;13 | ||
Theorem | 9p5e14 12536 | 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 5) = ;14 | ||
Theorem | 9p6e15 12537 | 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 6) = ;15 | ||
Theorem | 9p7e16 12538 | 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 7) = ;16 | ||
Theorem | 9p8e17 12539 | 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 8) = ;17 | ||
Theorem | 9p9e18 12540 | 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 9) = ;18 | ||
Theorem | 10p10e20 12541 | 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (;10 + ;10) = ;20 | ||
Theorem | 10m1e9 12542 | 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.) |
⊢ (;10 − 1) = 9 | ||
Theorem | 4t3lem 12543 | Lemma for 4t3e12 12544 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷 & ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 | ||
Theorem | 4t3e12 12544 | 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (4 · 3) = ;12 | ||
Theorem | 4t4e16 12545 | 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (4 · 4) = ;16 | ||
Theorem | 5t2e10 12546 | 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
⊢ (5 · 2) = ;10 | ||
Theorem | 5t3e15 12547 | 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (5 · 3) = ;15 | ||
Theorem | 5t4e20 12548 | 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (5 · 4) = ;20 | ||
Theorem | 5t5e25 12549 | 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (5 · 5) = ;25 | ||
Theorem | 6t2e12 12550 | 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (6 · 2) = ;12 | ||
Theorem | 6t3e18 12551 | 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (6 · 3) = ;18 | ||
Theorem | 6t4e24 12552 | 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (6 · 4) = ;24 | ||
Theorem | 6t5e30 12553 | 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (6 · 5) = ;30 | ||
Theorem | 6t6e36 12554 | 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (6 · 6) = ;36 | ||
Theorem | 7t2e14 12555 | 7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 2) = ;14 | ||
Theorem | 7t3e21 12556 | 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 3) = ;21 | ||
Theorem | 7t4e28 12557 | 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 4) = ;28 | ||
Theorem | 7t5e35 12558 | 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 5) = ;35 | ||
Theorem | 7t6e42 12559 | 7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 6) = ;42 | ||
Theorem | 7t7e49 12560 | 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 7) = ;49 | ||
Theorem | 8t2e16 12561 | 8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 2) = ;16 | ||
Theorem | 8t3e24 12562 | 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 3) = ;24 | ||
Theorem | 8t4e32 12563 | 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 4) = ;32 | ||
Theorem | 8t5e40 12564 | 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (8 · 5) = ;40 | ||
Theorem | 8t6e48 12565 | 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (8 · 6) = ;48 | ||
Theorem | 8t7e56 12566 | 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 7) = ;56 | ||
Theorem | 8t8e64 12567 | 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 8) = ;64 | ||
Theorem | 9t2e18 12568 | 9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 2) = ;18 | ||
Theorem | 9t3e27 12569 | 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 3) = ;27 | ||
Theorem | 9t4e36 12570 | 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 4) = ;36 | ||
Theorem | 9t5e45 12571 | 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 5) = ;45 | ||
Theorem | 9t6e54 12572 | 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 6) = ;54 | ||
Theorem | 9t7e63 12573 | 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 7) = ;63 | ||
Theorem | 9t8e72 12574 | 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 8) = ;72 | ||
Theorem | 9t9e81 12575 | 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 9) = ;81 | ||
Theorem | 9t11e99 12576 | 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
⊢ (9 · ;11) = ;99 | ||
Theorem | 9lt10 12577 | 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 9 < ;10 | ||
Theorem | 8lt10 12578 | 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 8 < ;10 | ||
Theorem | 7lt10 12579 | 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 7 < ;10 | ||
Theorem | 6lt10 12580 | 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 6 < ;10 | ||
Theorem | 5lt10 12581 | 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 5 < ;10 | ||
Theorem | 4lt10 12582 | 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 4 < ;10 | ||
Theorem | 3lt10 12583 | 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 3 < ;10 | ||
Theorem | 2lt10 12584 | 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 2 < ;10 | ||
Theorem | 1lt10 12585 | 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 1 < ;10 | ||
Theorem | decbin0 12586 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) | ||
Theorem | decbin2 12587 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) | ||
Theorem | decbin3 12588 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) | ||
Theorem | halfthird 12589 | Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | ||
Theorem | 5recm6rec 12590 | One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) | ||
Syntax | cuz 12591 | Extend class notation with the upper integer function. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". |
class ℤ≥ | ||
Definition | df-uz 12592* | Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 12593 for its value, uzssz 12612 for its relationship to ℤ, nnuz 12630 and nn0uz 12629 for its relationships to ℕ and ℕ0, and eluz1 12595 and eluz2 12597 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | ||
Theorem | uzval 12593* | The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) | ||
Theorem | uzf 12594 | The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ℤ≥:ℤ⟶𝒫 ℤ | ||
Theorem | eluz1 12595 | Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | ||
Theorem | eluzel2 12596 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | ||
Theorem | eluz2 12597 | Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
Theorem | eluzmn 12598 | Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
Theorem | eluz1i 12599 | Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
⊢ 𝑀 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
Theorem | eluzuzle 12600 | An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |