Home | Metamath
Proof Explorer Theorem List (p. 126 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 5lt10 12501 | 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 5 < ;10 | ||
Theorem | 4lt10 12502 | 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 4 < ;10 | ||
Theorem | 3lt10 12503 | 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 3 < ;10 | ||
Theorem | 2lt10 12504 | 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 2 < ;10 | ||
Theorem | 1lt10 12505 | 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 1 < ;10 | ||
Theorem | decbin0 12506 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) | ||
Theorem | decbin2 12507 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) | ||
Theorem | decbin3 12508 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) | ||
Theorem | halfthird 12509 | Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | ||
Theorem | 5recm6rec 12510 | One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) | ||
Syntax | cuz 12511 | Extend class notation with the upper integer function. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". |
class ℤ≥ | ||
Definition | df-uz 12512* | Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 12513 for its value, uzssz 12532 for its relationship to ℤ, nnuz 12550 and nn0uz 12549 for its relationships to ℕ and ℕ0, and eluz1 12515 and eluz2 12517 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | ||
Theorem | uzval 12513* | The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) | ||
Theorem | uzf 12514 | The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ℤ≥:ℤ⟶𝒫 ℤ | ||
Theorem | eluz1 12515 | Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | ||
Theorem | eluzel2 12516 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | ||
Theorem | eluz2 12517 | Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
Theorem | eluzmn 12518 | Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
Theorem | eluz1i 12519 | Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
⊢ 𝑀 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
Theorem | eluzuzle 12520 | An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) | ||
Theorem | eluzelz 12521 | A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | ||
Theorem | eluzelre 12522 | A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | ||
Theorem | eluzelcn 12523 | A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | ||
Theorem | eluzle 12524 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | ||
Theorem | eluz 12525 | Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) | ||
Theorem | uzid 12526 | Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
Theorem | uzidd 12527 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
Theorem | uzn0 12528 | The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) | ||
Theorem | uztrn 12529 | Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) | ||
Theorem | uztrn2 12530 | Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝐾) ⇒ ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) | ||
Theorem | uzneg 12531 | Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → -𝑀 ∈ (ℤ≥‘-𝑁)) | ||
Theorem | uzssz 12532 | An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (ℤ≥‘𝑀) ⊆ ℤ | ||
Theorem | uzssre 12533 | An upper set of integers is a subset of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (ℤ≥‘𝑀) ⊆ ℝ | ||
Theorem | uzss 12534 | Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | ||
Theorem | uztric 12535 | Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | ||
Theorem | uz11 12536 | The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.) |
⊢ (𝑀 ∈ ℤ → ((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ↔ 𝑀 = 𝑁)) | ||
Theorem | eluzp1m1 12537 | Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) | ||
Theorem | eluzp1l 12538 | Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑁) | ||
Theorem | eluzp1p1 12539 | Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) | ||
Theorem | eluzaddi 12540 | Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
Theorem | eluzsubi 12541 | Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | eluzadd 12542 | Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
Theorem | eluzsub 12543 | Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | subeluzsub 12544 | Membership of a difference in an earlier upper set of integers. (Contributed by AV, 10-May-2022.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀 − 𝐾) ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
Theorem | uzm1 12545 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) | ||
Theorem | uznn0sub 12546 | The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | ||
Theorem | uzin 12547 | Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) = (ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | ||
Theorem | uzp1 12548 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) | ||
Theorem | nn0uz 12549 | Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
⊢ ℕ0 = (ℤ≥‘0) | ||
Theorem | nnuz 12550 | Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
⊢ ℕ = (ℤ≥‘1) | ||
Theorem | elnnuz 12551 | A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | ||
Theorem | elnn0uz 12552 | A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | ||
Theorem | eluz2nn 12553 | An integer greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | ||
Theorem | eluz4eluz2 12554 | An integer greater than or equal to 4 is an integer greater than or equal to 2. (Contributed by AV, 30-May-2023.) |
⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ (ℤ≥‘2)) | ||
Theorem | eluz4nn 12555 | An integer greater than or equal to 4 is a positive integer. (Contributed by AV, 30-May-2023.) |
⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ ℕ) | ||
Theorem | eluzge2nn0 12556 | If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ0) | ||
Theorem | eluz2n0 12557 | An integer greater than or equal to 2 is not 0. (Contributed by AV, 25-May-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 0) | ||
Theorem | uzuzle23 12558 | An integer in the upper set of integers starting at 3 is element of the upper set of integers starting at 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝐴 ∈ (ℤ≥‘3) → 𝐴 ∈ (ℤ≥‘2)) | ||
Theorem | eluzge3nn 12559 | If an integer is greater than 3, then it is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | ||
Theorem | uz3m2nn 12560 | An integer greater than or equal to 3 decreased by 2 is a positive integer, analogous to uz2m1nn 12592. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | ||
Theorem | 1eluzge0 12561 | 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ 1 ∈ (ℤ≥‘0) | ||
Theorem | 2eluzge0 12562 | 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ 2 ∈ (ℤ≥‘0) | ||
Theorem | 2eluzge1 12563 | 2 is an integer greater than or equal to 1. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ 2 ∈ (ℤ≥‘1) | ||
Theorem | uznnssnn 12564 | The upper integers starting from a natural are a subset of the naturals. (Contributed by Scott Fenton, 29-Jun-2013.) |
⊢ (𝑁 ∈ ℕ → (ℤ≥‘𝑁) ⊆ ℕ) | ||
Theorem | raluz 12565* | Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | ||
Theorem | raluz2 12566* | Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | ||
Theorem | rexuz 12567* | Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | ||
Theorem | rexuz2 12568* | Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | ||
Theorem | 2rexuz 12569* | Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.) |
⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) | ||
Theorem | peano2uz 12570 | Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | ||
Theorem | peano2uzs 12571 | Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (𝑁 + 1) ∈ 𝑍) | ||
Theorem | peano2uzr 12572 | Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) | ||
Theorem | uzaddcl 12573 | Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | nn0pzuz 12574 | The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) | ||
Theorem | uzind4 12575* | Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
Theorem | uzind4ALT 12576* | Induction on the upper set of integers that starts at an integer 𝑀. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 12575 or uzind4ALT 12576 may be used; see comment for nnind 11921. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) & ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
Theorem | uzind4s 12577* | Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.) |
⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) | ||
Theorem | uzind4s2 12578* | Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 12577 when 𝑗 and 𝑘 must be distinct in [(𝑘 + 1) / 𝑗]𝜑. (Contributed by NM, 16-Nov-2005.) |
⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑗]𝜑) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ([𝑘 / 𝑗]𝜑 → [(𝑘 + 1) / 𝑗]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑗]𝜑) | ||
Theorem | uzind4i 12579* | Induction on the upper integers that start at 𝑀. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 12575 assuming that 𝜓 holds unconditionally. Notice that 𝑁 ∈ (ℤ≥‘𝑀) implies that the lower bound 𝑀 is an integer (𝑀 ∈ ℤ, see eluzel2 12516). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
Theorem | uzwo 12580* | Well-ordering principle: any nonempty subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
Theorem | uzwo2 12581* | Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃!𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
Theorem | nnwo 12582* | Well-ordering principle: any nonempty set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) |
⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | nnwof 12583* | Well-ordering principle: any nonempty set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | nnwos 12584* | Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) | ||
Theorem | indstr 12585* | Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
Theorem | eluznn0 12586 | Membership in a nonnegative upper set of integers implies membership in ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | ||
Theorem | eluznn 12587 | Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) | ||
Theorem | eluz2b1 12588 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | ||
Theorem | eluz2gt1 12589 | An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | ||
Theorem | eluz2b2 12590 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | ||
Theorem | eluz2b3 12591 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | ||
Theorem | uz2m1nn 12592 | One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | ||
Theorem | 1nuz2 12593 | 1 is not in (ℤ≥‘2). (Contributed by Paul Chapman, 21-Nov-2012.) |
⊢ ¬ 1 ∈ (ℤ≥‘2) | ||
Theorem | elnn1uz2 12594 | A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | ||
Theorem | uz2mulcl 12595 | Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ (ℤ≥‘2)) | ||
Theorem | indstr2 12596* | Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜒 & ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
Theorem | uzinfi 12597 | Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ 𝑀 ∈ ℤ ⇒ ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 | ||
Theorem | nninf 12598 | The infimum of the set of positive integers is one. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ inf(ℕ, ℝ, < ) = 1 | ||
Theorem | nn0inf 12599 | The infimum of the set of nonnegative integers is zero. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ inf(ℕ0, ℝ, < ) = 0 | ||
Theorem | infssuzle 12600 | The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |