Home | Metamath
Proof Explorer Theorem List (p. 126 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29276) |
Hilbert Space Explorer
(29277-30799) |
Users' Mathboxes
(30800-46482) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | decmul1c 12501 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 & ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | ||
Theorem | decmul2c 12502 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 & ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 ⇒ ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 | ||
Theorem | decmulnc 12503 | The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021.) |
⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (𝑁 · ;𝐴𝐵) = ;(𝑁 · 𝐴)(𝑁 · 𝐵) | ||
Theorem | 11multnc 12504 | The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑁 · ;11) = ;𝑁𝑁 | ||
Theorem | decmul10add 12505 | A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐸 = (𝑀 · 𝐴) & ⊢ 𝐹 = (𝑀 · 𝐵) ⇒ ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) | ||
Theorem | 6p5lem 12506 | Lemma for 6p5e11 12509 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐵 = (𝐷 + 1) & ⊢ 𝐶 = (𝐸 + 1) & ⊢ (𝐴 + 𝐷) = ;1𝐸 ⇒ ⊢ (𝐴 + 𝐵) = ;1𝐶 | ||
Theorem | 5p5e10 12507 | 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
⊢ (5 + 5) = ;10 | ||
Theorem | 6p4e10 12508 | 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
⊢ (6 + 4) = ;10 | ||
Theorem | 6p5e11 12509 | 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (6 + 5) = ;11 | ||
Theorem | 6p6e12 12510 | 6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (6 + 6) = ;12 | ||
Theorem | 7p3e10 12511 | 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
⊢ (7 + 3) = ;10 | ||
Theorem | 7p4e11 12512 | 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (7 + 4) = ;11 | ||
Theorem | 7p5e12 12513 | 7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 + 5) = ;12 | ||
Theorem | 7p6e13 12514 | 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 + 6) = ;13 | ||
Theorem | 7p7e14 12515 | 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 + 7) = ;14 | ||
Theorem | 8p2e10 12516 | 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
⊢ (8 + 2) = ;10 | ||
Theorem | 8p3e11 12517 | 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (8 + 3) = ;11 | ||
Theorem | 8p4e12 12518 | 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 4) = ;12 | ||
Theorem | 8p5e13 12519 | 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 5) = ;13 | ||
Theorem | 8p6e14 12520 | 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 6) = ;14 | ||
Theorem | 8p7e15 12521 | 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 7) = ;15 | ||
Theorem | 8p8e16 12522 | 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 + 8) = ;16 | ||
Theorem | 9p2e11 12523 | 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (9 + 2) = ;11 | ||
Theorem | 9p3e12 12524 | 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 3) = ;12 | ||
Theorem | 9p4e13 12525 | 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 4) = ;13 | ||
Theorem | 9p5e14 12526 | 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 5) = ;14 | ||
Theorem | 9p6e15 12527 | 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 6) = ;15 | ||
Theorem | 9p7e16 12528 | 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 7) = ;16 | ||
Theorem | 9p8e17 12529 | 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 8) = ;17 | ||
Theorem | 9p9e18 12530 | 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 + 9) = ;18 | ||
Theorem | 10p10e20 12531 | 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (;10 + ;10) = ;20 | ||
Theorem | 10m1e9 12532 | 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.) |
⊢ (;10 − 1) = 9 | ||
Theorem | 4t3lem 12533 | Lemma for 4t3e12 12534 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷 & ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 | ||
Theorem | 4t3e12 12534 | 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (4 · 3) = ;12 | ||
Theorem | 4t4e16 12535 | 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (4 · 4) = ;16 | ||
Theorem | 5t2e10 12536 | 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
⊢ (5 · 2) = ;10 | ||
Theorem | 5t3e15 12537 | 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (5 · 3) = ;15 | ||
Theorem | 5t4e20 12538 | 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (5 · 4) = ;20 | ||
Theorem | 5t5e25 12539 | 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (5 · 5) = ;25 | ||
Theorem | 6t2e12 12540 | 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (6 · 2) = ;12 | ||
Theorem | 6t3e18 12541 | 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (6 · 3) = ;18 | ||
Theorem | 6t4e24 12542 | 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (6 · 4) = ;24 | ||
Theorem | 6t5e30 12543 | 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (6 · 5) = ;30 | ||
Theorem | 6t6e36 12544 | 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (6 · 6) = ;36 | ||
Theorem | 7t2e14 12545 | 7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 2) = ;14 | ||
Theorem | 7t3e21 12546 | 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 3) = ;21 | ||
Theorem | 7t4e28 12547 | 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 4) = ;28 | ||
Theorem | 7t5e35 12548 | 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 5) = ;35 | ||
Theorem | 7t6e42 12549 | 7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 6) = ;42 | ||
Theorem | 7t7e49 12550 | 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (7 · 7) = ;49 | ||
Theorem | 8t2e16 12551 | 8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 2) = ;16 | ||
Theorem | 8t3e24 12552 | 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 3) = ;24 | ||
Theorem | 8t4e32 12553 | 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 4) = ;32 | ||
Theorem | 8t5e40 12554 | 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (8 · 5) = ;40 | ||
Theorem | 8t6e48 12555 | 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (8 · 6) = ;48 | ||
Theorem | 8t7e56 12556 | 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 7) = ;56 | ||
Theorem | 8t8e64 12557 | 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (8 · 8) = ;64 | ||
Theorem | 9t2e18 12558 | 9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 2) = ;18 | ||
Theorem | 9t3e27 12559 | 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 3) = ;27 | ||
Theorem | 9t4e36 12560 | 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 4) = ;36 | ||
Theorem | 9t5e45 12561 | 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 5) = ;45 | ||
Theorem | 9t6e54 12562 | 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 6) = ;54 | ||
Theorem | 9t7e63 12563 | 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 7) = ;63 | ||
Theorem | 9t8e72 12564 | 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 8) = ;72 | ||
Theorem | 9t9e81 12565 | 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ (9 · 9) = ;81 | ||
Theorem | 9t11e99 12566 | 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
⊢ (9 · ;11) = ;99 | ||
Theorem | 9lt10 12567 | 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 9 < ;10 | ||
Theorem | 8lt10 12568 | 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 8 < ;10 | ||
Theorem | 7lt10 12569 | 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 7 < ;10 | ||
Theorem | 6lt10 12570 | 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 6 < ;10 | ||
Theorem | 5lt10 12571 | 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 5 < ;10 | ||
Theorem | 4lt10 12572 | 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 4 < ;10 | ||
Theorem | 3lt10 12573 | 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 3 < ;10 | ||
Theorem | 2lt10 12574 | 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 2 < ;10 | ||
Theorem | 1lt10 12575 | 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 1 < ;10 | ||
Theorem | decbin0 12576 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) | ||
Theorem | decbin2 12577 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) | ||
Theorem | decbin3 12578 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) | ||
Theorem | halfthird 12579 | Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | ||
Theorem | 5recm6rec 12580 | One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) | ||
Syntax | cuz 12581 | Extend class notation with the upper integer function. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". |
class ℤ≥ | ||
Definition | df-uz 12582* | Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 12583 for its value, uzssz 12602 for its relationship to ℤ, nnuz 12620 and nn0uz 12619 for its relationships to ℕ and ℕ0, and eluz1 12585 and eluz2 12587 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | ||
Theorem | uzval 12583* | The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) | ||
Theorem | uzf 12584 | The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ℤ≥:ℤ⟶𝒫 ℤ | ||
Theorem | eluz1 12585 | Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | ||
Theorem | eluzel2 12586 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | ||
Theorem | eluz2 12587 | Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
Theorem | eluzmn 12588 | Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
Theorem | eluz1i 12589 | Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
⊢ 𝑀 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
Theorem | eluzuzle 12590 | An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) | ||
Theorem | eluzelz 12591 | A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | ||
Theorem | eluzelre 12592 | A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | ||
Theorem | eluzelcn 12593 | A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | ||
Theorem | eluzle 12594 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | ||
Theorem | eluz 12595 | Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) | ||
Theorem | uzid 12596 | Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
Theorem | uzidd 12597 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
Theorem | uzn0 12598 | The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) | ||
Theorem | uztrn 12599 | Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) | ||
Theorem | uztrn2 12600 | Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝐾) ⇒ ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |