MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 27075
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 27074 . 2 class ζ
2 c1 11185 . . . . . . 7 class 1
3 c2 12348 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1536 . . . . . . . . 9 class 𝑠
6 cmin 11520 . . . . . . . . 9 class
72, 5, 6co 7448 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 26615 . . . . . . . 8 class 𝑐
93, 7, 8co 7448 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7448 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1536 . . . . . . 7 class 𝑓
135, 12cfv 6573 . . . . . 6 class (𝑓𝑠)
14 cmul 11189 . . . . . 6 class ·
1510, 13, 14co 7448 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12553 . . . . . 6 class 0
17 cc0 11184 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1536 . . . . . . . . 9 class 𝑛
20 cfz 13567 . . . . . . . . 9 class ...
2117, 19, 20co 7448 . . . . . . . 8 class (0...𝑛)
222cneg 11521 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1536 . . . . . . . . . . 11 class 𝑘
25 cexp 14112 . . . . . . . . . . 11 class
2622, 24, 25co 7448 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 14351 . . . . . . . . . . 11 class C
2819, 24, 27co 7448 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7448 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 11187 . . . . . . . . . . 11 class +
3124, 2, 30co 7448 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7448 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7448 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15734 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7448 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7448 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11947 . . . . . . 7 class /
3834, 36, 37co 7448 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15734 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1537 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 11182 . . . . 5 class
422csn 4648 . . . . 5 class {1}
4341, 42cdif 3973 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3067 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 24921 . . . 4 class cn
4643, 41, 45co 7448 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7403 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1537 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator