MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 26163
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 26162 . 2 class ζ
2 c1 10872 . . . . . . 7 class 1
3 c2 12028 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1538 . . . . . . . . 9 class 𝑠
6 cmin 11205 . . . . . . . . 9 class
72, 5, 6co 7275 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 25711 . . . . . . . 8 class 𝑐
93, 7, 8co 7275 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7275 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1538 . . . . . . 7 class 𝑓
135, 12cfv 6433 . . . . . 6 class (𝑓𝑠)
14 cmul 10876 . . . . . 6 class ·
1510, 13, 14co 7275 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12233 . . . . . 6 class 0
17 cc0 10871 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1538 . . . . . . . . 9 class 𝑛
20 cfz 13239 . . . . . . . . 9 class ...
2117, 19, 20co 7275 . . . . . . . 8 class (0...𝑛)
222cneg 11206 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1538 . . . . . . . . . . 11 class 𝑘
25 cexp 13782 . . . . . . . . . . 11 class
2622, 24, 25co 7275 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 14016 . . . . . . . . . . 11 class C
2819, 24, 27co 7275 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7275 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 10874 . . . . . . . . . . 11 class +
3124, 2, 30co 7275 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7275 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7275 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15397 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7275 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7275 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11632 . . . . . . 7 class /
3834, 36, 37co 7275 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15397 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1539 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 10869 . . . . 5 class
422csn 4561 . . . . 5 class {1}
4341, 42cdif 3884 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3064 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 24039 . . . 4 class cn
4643, 41, 45co 7275 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7231 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1539 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator