Detailed syntax breakdown of Definition df-zeta
Step | Hyp | Ref
| Expression |
1 | | czeta 26162 |
. 2
class
ζ |
2 | | c1 10872 |
. . . . . . 7
class
1 |
3 | | c2 12028 |
. . . . . . . 8
class
2 |
4 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑠 |
6 | | cmin 11205 |
. . . . . . . . 9
class
− |
7 | 2, 5, 6 | co 7275 |
. . . . . . . 8
class (1
− 𝑠) |
8 | | ccxp 25711 |
. . . . . . . 8
class
↑𝑐 |
9 | 3, 7, 8 | co 7275 |
. . . . . . 7
class
(2↑𝑐(1 − 𝑠)) |
10 | 2, 9, 6 | co 7275 |
. . . . . 6
class (1
− (2↑𝑐(1 − 𝑠))) |
11 | | vf |
. . . . . . . 8
setvar 𝑓 |
12 | 11 | cv 1538 |
. . . . . . 7
class 𝑓 |
13 | 5, 12 | cfv 6433 |
. . . . . 6
class (𝑓‘𝑠) |
14 | | cmul 10876 |
. . . . . 6
class
· |
15 | 10, 13, 14 | co 7275 |
. . . . 5
class ((1
− (2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) |
16 | | cn0 12233 |
. . . . . 6
class
ℕ0 |
17 | | cc0 10871 |
. . . . . . . . 9
class
0 |
18 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
19 | 18 | cv 1538 |
. . . . . . . . 9
class 𝑛 |
20 | | cfz 13239 |
. . . . . . . . 9
class
... |
21 | 17, 19, 20 | co 7275 |
. . . . . . . 8
class
(0...𝑛) |
22 | 2 | cneg 11206 |
. . . . . . . . . . 11
class
-1 |
23 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
24 | 23 | cv 1538 |
. . . . . . . . . . 11
class 𝑘 |
25 | | cexp 13782 |
. . . . . . . . . . 11
class
↑ |
26 | 22, 24, 25 | co 7275 |
. . . . . . . . . 10
class
(-1↑𝑘) |
27 | | cbc 14016 |
. . . . . . . . . . 11
class
C |
28 | 19, 24, 27 | co 7275 |
. . . . . . . . . 10
class (𝑛C𝑘) |
29 | 26, 28, 14 | co 7275 |
. . . . . . . . 9
class
((-1↑𝑘)
· (𝑛C𝑘)) |
30 | | caddc 10874 |
. . . . . . . . . . 11
class
+ |
31 | 24, 2, 30 | co 7275 |
. . . . . . . . . 10
class (𝑘 + 1) |
32 | 31, 5, 8 | co 7275 |
. . . . . . . . 9
class ((𝑘 +
1)↑𝑐𝑠) |
33 | 29, 32, 14 | co 7275 |
. . . . . . . 8
class
(((-1↑𝑘)
· (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) |
34 | 21, 33, 23 | csu 15397 |
. . . . . . 7
class
Σ𝑘 ∈
(0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) |
35 | 19, 2, 30 | co 7275 |
. . . . . . . 8
class (𝑛 + 1) |
36 | 3, 35, 25 | co 7275 |
. . . . . . 7
class
(2↑(𝑛 +
1)) |
37 | | cdiv 11632 |
. . . . . . 7
class
/ |
38 | 34, 36, 37 | co 7275 |
. . . . . 6
class
(Σ𝑘 ∈
(0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))) |
39 | 16, 38, 18 | csu 15397 |
. . . . 5
class
Σ𝑛 ∈
ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))) |
40 | 15, 39 | wceq 1539 |
. . . 4
wff ((1 −
(2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))) |
41 | | cc 10869 |
. . . . 5
class
ℂ |
42 | 2 | csn 4561 |
. . . . 5
class
{1} |
43 | 41, 42 | cdif 3884 |
. . . 4
class (ℂ
∖ {1}) |
44 | 40, 4, 43 | wral 3064 |
. . 3
wff
∀𝑠 ∈
(ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))) |
45 | | ccncf 24039 |
. . . 4
class
–cn→ |
46 | 43, 41, 45 | co 7275 |
. . 3
class ((ℂ
∖ {1})–cn→ℂ) |
47 | 44, 11, 46 | crio 7231 |
. 2
class
(℩𝑓
∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 −
(2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) |
48 | 1, 47 | wceq 1539 |
1
wff ζ =
(℩𝑓 ∈
((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 −
(2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) |