MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 26068
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 26067 . 2 class ζ
2 c1 10803 . . . . . . 7 class 1
3 c2 11958 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1538 . . . . . . . . 9 class 𝑠
6 cmin 11135 . . . . . . . . 9 class
72, 5, 6co 7255 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 25616 . . . . . . . 8 class 𝑐
93, 7, 8co 7255 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7255 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1538 . . . . . . 7 class 𝑓
135, 12cfv 6418 . . . . . 6 class (𝑓𝑠)
14 cmul 10807 . . . . . 6 class ·
1510, 13, 14co 7255 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12163 . . . . . 6 class 0
17 cc0 10802 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1538 . . . . . . . . 9 class 𝑛
20 cfz 13168 . . . . . . . . 9 class ...
2117, 19, 20co 7255 . . . . . . . 8 class (0...𝑛)
222cneg 11136 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1538 . . . . . . . . . . 11 class 𝑘
25 cexp 13710 . . . . . . . . . . 11 class
2622, 24, 25co 7255 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 13944 . . . . . . . . . . 11 class C
2819, 24, 27co 7255 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7255 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 10805 . . . . . . . . . . 11 class +
3124, 2, 30co 7255 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7255 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7255 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15325 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7255 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7255 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11562 . . . . . . 7 class /
3834, 36, 37co 7255 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15325 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1539 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 10800 . . . . 5 class
422csn 4558 . . . . 5 class {1}
4341, 42cdif 3880 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3063 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 23945 . . . 4 class cn
4643, 41, 45co 7255 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7211 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1539 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator