MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 26952
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 26951 . 2 class ζ
2 c1 11014 . . . . . . 7 class 1
3 c2 12187 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1540 . . . . . . . . 9 class 𝑠
6 cmin 11351 . . . . . . . . 9 class
72, 5, 6co 7352 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 26492 . . . . . . . 8 class 𝑐
93, 7, 8co 7352 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7352 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1540 . . . . . . 7 class 𝑓
135, 12cfv 6486 . . . . . 6 class (𝑓𝑠)
14 cmul 11018 . . . . . 6 class ·
1510, 13, 14co 7352 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12388 . . . . . 6 class 0
17 cc0 11013 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1540 . . . . . . . . 9 class 𝑛
20 cfz 13409 . . . . . . . . 9 class ...
2117, 19, 20co 7352 . . . . . . . 8 class (0...𝑛)
222cneg 11352 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1540 . . . . . . . . . . 11 class 𝑘
25 cexp 13970 . . . . . . . . . . 11 class
2622, 24, 25co 7352 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 14211 . . . . . . . . . . 11 class C
2819, 24, 27co 7352 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7352 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 11016 . . . . . . . . . . 11 class +
3124, 2, 30co 7352 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7352 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7352 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15595 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7352 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7352 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11781 . . . . . . 7 class /
3834, 36, 37co 7352 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15595 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1541 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 11011 . . . . 5 class
422csn 4575 . . . . 5 class {1}
4341, 42cdif 3895 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3048 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 24797 . . . 4 class cn
4643, 41, 45co 7352 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7308 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1541 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator