MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 26931
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 26930 . 2 class ζ
2 c1 11076 . . . . . . 7 class 1
3 c2 12248 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1539 . . . . . . . . 9 class 𝑠
6 cmin 11412 . . . . . . . . 9 class
72, 5, 6co 7390 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 26471 . . . . . . . 8 class 𝑐
93, 7, 8co 7390 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7390 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1539 . . . . . . 7 class 𝑓
135, 12cfv 6514 . . . . . 6 class (𝑓𝑠)
14 cmul 11080 . . . . . 6 class ·
1510, 13, 14co 7390 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12449 . . . . . 6 class 0
17 cc0 11075 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1539 . . . . . . . . 9 class 𝑛
20 cfz 13475 . . . . . . . . 9 class ...
2117, 19, 20co 7390 . . . . . . . 8 class (0...𝑛)
222cneg 11413 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1539 . . . . . . . . . . 11 class 𝑘
25 cexp 14033 . . . . . . . . . . 11 class
2622, 24, 25co 7390 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 14274 . . . . . . . . . . 11 class C
2819, 24, 27co 7390 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7390 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 11078 . . . . . . . . . . 11 class +
3124, 2, 30co 7390 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7390 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7390 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15659 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7390 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7390 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11842 . . . . . . 7 class /
3834, 36, 37co 7390 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15659 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1540 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 11073 . . . . 5 class
422csn 4592 . . . . 5 class {1}
4341, 42cdif 3914 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3045 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 24776 . . . 4 class cn
4643, 41, 45co 7390 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7346 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1540 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator