MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 26924
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 26923 . 2 class ζ
2 c1 11069 . . . . . . 7 class 1
3 c2 12241 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1539 . . . . . . . . 9 class 𝑠
6 cmin 11405 . . . . . . . . 9 class
72, 5, 6co 7387 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 26464 . . . . . . . 8 class 𝑐
93, 7, 8co 7387 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7387 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1539 . . . . . . 7 class 𝑓
135, 12cfv 6511 . . . . . 6 class (𝑓𝑠)
14 cmul 11073 . . . . . 6 class ·
1510, 13, 14co 7387 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12442 . . . . . 6 class 0
17 cc0 11068 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1539 . . . . . . . . 9 class 𝑛
20 cfz 13468 . . . . . . . . 9 class ...
2117, 19, 20co 7387 . . . . . . . 8 class (0...𝑛)
222cneg 11406 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1539 . . . . . . . . . . 11 class 𝑘
25 cexp 14026 . . . . . . . . . . 11 class
2622, 24, 25co 7387 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 14267 . . . . . . . . . . 11 class C
2819, 24, 27co 7387 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7387 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 11071 . . . . . . . . . . 11 class +
3124, 2, 30co 7387 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7387 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7387 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15652 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7387 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7387 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11835 . . . . . . 7 class /
3834, 36, 37co 7387 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15652 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1540 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 11066 . . . . 5 class
422csn 4589 . . . . 5 class {1}
4341, 42cdif 3911 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3044 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 24769 . . . 4 class cn
4643, 41, 45co 7387 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7343 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1540 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator