MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 27083
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 27082 . 2 class ζ
2 c1 11163 . . . . . . 7 class 1
3 c2 12328 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1538 . . . . . . . . 9 class 𝑠
6 cmin 11499 . . . . . . . . 9 class
72, 5, 6co 7438 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 26623 . . . . . . . 8 class 𝑐
93, 7, 8co 7438 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7438 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1538 . . . . . . 7 class 𝑓
135, 12cfv 6569 . . . . . 6 class (𝑓𝑠)
14 cmul 11167 . . . . . 6 class ·
1510, 13, 14co 7438 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12533 . . . . . 6 class 0
17 cc0 11162 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1538 . . . . . . . . 9 class 𝑛
20 cfz 13553 . . . . . . . . 9 class ...
2117, 19, 20co 7438 . . . . . . . 8 class (0...𝑛)
222cneg 11500 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1538 . . . . . . . . . . 11 class 𝑘
25 cexp 14108 . . . . . . . . . . 11 class
2622, 24, 25co 7438 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 14347 . . . . . . . . . . 11 class C
2819, 24, 27co 7438 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7438 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 11165 . . . . . . . . . . 11 class +
3124, 2, 30co 7438 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7438 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7438 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15728 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7438 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7438 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11927 . . . . . . 7 class /
3834, 36, 37co 7438 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15728 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1539 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 11160 . . . . 5 class
422csn 4634 . . . . 5 class {1}
4341, 42cdif 3963 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3061 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 24927 . . . 4 class cn
4643, 41, 45co 7438 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7394 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1539 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator