MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 26974
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 26973 . 2 class ζ
2 c1 11128 . . . . . . 7 class 1
3 c2 12293 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1539 . . . . . . . . 9 class 𝑠
6 cmin 11464 . . . . . . . . 9 class
72, 5, 6co 7403 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 26514 . . . . . . . 8 class 𝑐
93, 7, 8co 7403 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7403 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1539 . . . . . . 7 class 𝑓
135, 12cfv 6530 . . . . . 6 class (𝑓𝑠)
14 cmul 11132 . . . . . 6 class ·
1510, 13, 14co 7403 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12499 . . . . . 6 class 0
17 cc0 11127 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1539 . . . . . . . . 9 class 𝑛
20 cfz 13522 . . . . . . . . 9 class ...
2117, 19, 20co 7403 . . . . . . . 8 class (0...𝑛)
222cneg 11465 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1539 . . . . . . . . . . 11 class 𝑘
25 cexp 14077 . . . . . . . . . . 11 class
2622, 24, 25co 7403 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 14318 . . . . . . . . . . 11 class C
2819, 24, 27co 7403 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7403 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 11130 . . . . . . . . . . 11 class +
3124, 2, 30co 7403 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7403 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7403 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15700 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7403 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7403 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11892 . . . . . . 7 class /
3834, 36, 37co 7403 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15700 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1540 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 11125 . . . . 5 class
422csn 4601 . . . . 5 class {1}
4341, 42cdif 3923 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3051 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 24818 . . . 4 class cn
4643, 41, 45co 7403 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7359 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1540 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator