Detailed syntax breakdown of Definition df-zeta
| Step | Hyp | Ref
| Expression |
| 1 | | czeta 26973 |
. 2
class
ζ |
| 2 | | c1 11128 |
. . . . . . 7
class
1 |
| 3 | | c2 12293 |
. . . . . . . 8
class
2 |
| 4 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
| 5 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑠 |
| 6 | | cmin 11464 |
. . . . . . . . 9
class
− |
| 7 | 2, 5, 6 | co 7403 |
. . . . . . . 8
class (1
− 𝑠) |
| 8 | | ccxp 26514 |
. . . . . . . 8
class
↑𝑐 |
| 9 | 3, 7, 8 | co 7403 |
. . . . . . 7
class
(2↑𝑐(1 − 𝑠)) |
| 10 | 2, 9, 6 | co 7403 |
. . . . . 6
class (1
− (2↑𝑐(1 − 𝑠))) |
| 11 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 12 | 11 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 13 | 5, 12 | cfv 6530 |
. . . . . 6
class (𝑓‘𝑠) |
| 14 | | cmul 11132 |
. . . . . 6
class
· |
| 15 | 10, 13, 14 | co 7403 |
. . . . 5
class ((1
− (2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) |
| 16 | | cn0 12499 |
. . . . . 6
class
ℕ0 |
| 17 | | cc0 11127 |
. . . . . . . . 9
class
0 |
| 18 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
| 19 | 18 | cv 1539 |
. . . . . . . . 9
class 𝑛 |
| 20 | | cfz 13522 |
. . . . . . . . 9
class
... |
| 21 | 17, 19, 20 | co 7403 |
. . . . . . . 8
class
(0...𝑛) |
| 22 | 2 | cneg 11465 |
. . . . . . . . . . 11
class
-1 |
| 23 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
| 24 | 23 | cv 1539 |
. . . . . . . . . . 11
class 𝑘 |
| 25 | | cexp 14077 |
. . . . . . . . . . 11
class
↑ |
| 26 | 22, 24, 25 | co 7403 |
. . . . . . . . . 10
class
(-1↑𝑘) |
| 27 | | cbc 14318 |
. . . . . . . . . . 11
class
C |
| 28 | 19, 24, 27 | co 7403 |
. . . . . . . . . 10
class (𝑛C𝑘) |
| 29 | 26, 28, 14 | co 7403 |
. . . . . . . . 9
class
((-1↑𝑘)
· (𝑛C𝑘)) |
| 30 | | caddc 11130 |
. . . . . . . . . . 11
class
+ |
| 31 | 24, 2, 30 | co 7403 |
. . . . . . . . . 10
class (𝑘 + 1) |
| 32 | 31, 5, 8 | co 7403 |
. . . . . . . . 9
class ((𝑘 +
1)↑𝑐𝑠) |
| 33 | 29, 32, 14 | co 7403 |
. . . . . . . 8
class
(((-1↑𝑘)
· (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) |
| 34 | 21, 33, 23 | csu 15700 |
. . . . . . 7
class
Σ𝑘 ∈
(0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) |
| 35 | 19, 2, 30 | co 7403 |
. . . . . . . 8
class (𝑛 + 1) |
| 36 | 3, 35, 25 | co 7403 |
. . . . . . 7
class
(2↑(𝑛 +
1)) |
| 37 | | cdiv 11892 |
. . . . . . 7
class
/ |
| 38 | 34, 36, 37 | co 7403 |
. . . . . 6
class
(Σ𝑘 ∈
(0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))) |
| 39 | 16, 38, 18 | csu 15700 |
. . . . 5
class
Σ𝑛 ∈
ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))) |
| 40 | 15, 39 | wceq 1540 |
. . . 4
wff ((1 −
(2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))) |
| 41 | | cc 11125 |
. . . . 5
class
ℂ |
| 42 | 2 | csn 4601 |
. . . . 5
class
{1} |
| 43 | 41, 42 | cdif 3923 |
. . . 4
class (ℂ
∖ {1}) |
| 44 | 40, 4, 43 | wral 3051 |
. . 3
wff
∀𝑠 ∈
(ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))) |
| 45 | | ccncf 24818 |
. . . 4
class
–cn→ |
| 46 | 43, 41, 45 | co 7403 |
. . 3
class ((ℂ
∖ {1})–cn→ℂ) |
| 47 | 44, 11, 46 | crio 7359 |
. 2
class
(℩𝑓
∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 −
(2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) |
| 48 | 1, 47 | wceq 1540 |
1
wff ζ =
(℩𝑓 ∈
((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 −
(2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) |