MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 26940
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 26939 . 2 class ζ
2 c1 11029 . . . . . . 7 class 1
3 c2 12201 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1539 . . . . . . . . 9 class 𝑠
6 cmin 11365 . . . . . . . . 9 class
72, 5, 6co 7353 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 26480 . . . . . . . 8 class 𝑐
93, 7, 8co 7353 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7353 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1539 . . . . . . 7 class 𝑓
135, 12cfv 6486 . . . . . 6 class (𝑓𝑠)
14 cmul 11033 . . . . . 6 class ·
1510, 13, 14co 7353 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12402 . . . . . 6 class 0
17 cc0 11028 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1539 . . . . . . . . 9 class 𝑛
20 cfz 13428 . . . . . . . . 9 class ...
2117, 19, 20co 7353 . . . . . . . 8 class (0...𝑛)
222cneg 11366 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1539 . . . . . . . . . . 11 class 𝑘
25 cexp 13986 . . . . . . . . . . 11 class
2622, 24, 25co 7353 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 14227 . . . . . . . . . . 11 class C
2819, 24, 27co 7353 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7353 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 11031 . . . . . . . . . . 11 class +
3124, 2, 30co 7353 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7353 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7353 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15611 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7353 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7353 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11795 . . . . . . 7 class /
3834, 36, 37co 7353 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15611 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1540 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 11026 . . . . 5 class
422csn 4579 . . . . 5 class {1}
4341, 42cdif 3902 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3044 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 24785 . . . 4 class cn
4643, 41, 45co 7353 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7309 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1540 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator