MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zetacvg Structured version   Visualization version   GIF version

Theorem zetacvg 25600
Description: The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
zetacvg.1 (𝜑𝑆 ∈ ℂ)
zetacvg.2 (𝜑 → 1 < (ℜ‘𝑆))
zetacvg.3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝑘𝑐-𝑆))
Assertion
Ref Expression
zetacvg (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑆,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem zetacvg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12269 . 2 ℕ = (ℤ‘1)
2 1zzd 12001 . 2 (𝜑 → 1 ∈ ℤ)
3 oveq1 7142 . . . . 5 (𝑛 = 𝑘 → (𝑛𝑐-(ℜ‘𝑆)) = (𝑘𝑐-(ℜ‘𝑆)))
4 eqid 2798 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆))) = (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))
5 ovex 7168 . . . . 5 (𝑘𝑐-(ℜ‘𝑆)) ∈ V
63, 4, 5fvmpt 6745 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘𝑐-(ℜ‘𝑆)))
76adantl 485 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘𝑐-(ℜ‘𝑆)))
8 zetacvg.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝑘𝑐-𝑆))
9 nncn 11633 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
109adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
11 nnne0 11659 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
1211adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
13 zetacvg.1 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
1413negcld 10973 . . . . . . . 8 (𝜑 → -𝑆 ∈ ℂ)
1514adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → -𝑆 ∈ ℂ)
1610, 12, 15cxpefd 25303 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-𝑆) = (exp‘(-𝑆 · (log‘𝑘))))
178, 16eqtrd 2833 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (exp‘(-𝑆 · (log‘𝑘))))
1817fveq2d 6649 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) = (abs‘(exp‘(-𝑆 · (log‘𝑘)))))
19 nnrp 12388 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
2019relogcld 25214 . . . . . . 7 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℝ)
2120recnd 10658 . . . . . 6 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℂ)
22 mulcl 10610 . . . . . 6 ((-𝑆 ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-𝑆 · (log‘𝑘)) ∈ ℂ)
2314, 21, 22syl2an 598 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (-𝑆 · (log‘𝑘)) ∈ ℂ)
24 absef 15542 . . . . 5 ((-𝑆 · (log‘𝑘)) ∈ ℂ → (abs‘(exp‘(-𝑆 · (log‘𝑘)))) = (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))))
2523, 24syl 17 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(exp‘(-𝑆 · (log‘𝑘)))) = (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))))
26 remul 14480 . . . . . . . 8 ((-𝑆 ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))))
2714, 21, 26syl2an 598 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))))
2813renegd 14560 . . . . . . . . 9 (𝜑 → (ℜ‘-𝑆) = -(ℜ‘𝑆))
2920rered 14575 . . . . . . . . 9 (𝑘 ∈ ℕ → (ℜ‘(log‘𝑘)) = (log‘𝑘))
3028, 29oveqan12d 7154 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘)))
3120reim0d 14576 . . . . . . . . . 10 (𝑘 ∈ ℕ → (ℑ‘(log‘𝑘)) = 0)
3231oveq2d 7151 . . . . . . . . 9 (𝑘 ∈ ℕ → ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘))) = ((ℑ‘-𝑆) · 0))
33 imcl 14462 . . . . . . . . . . . 12 (-𝑆 ∈ ℂ → (ℑ‘-𝑆) ∈ ℝ)
3433recnd 10658 . . . . . . . . . . 11 (-𝑆 ∈ ℂ → (ℑ‘-𝑆) ∈ ℂ)
3514, 34syl 17 . . . . . . . . . 10 (𝜑 → (ℑ‘-𝑆) ∈ ℂ)
3635mul01d 10828 . . . . . . . . 9 (𝜑 → ((ℑ‘-𝑆) · 0) = 0)
3732, 36sylan9eqr 2855 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘))) = 0)
3830, 37oveq12d 7153 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))) = ((-(ℜ‘𝑆) · (log‘𝑘)) − 0))
3913recld 14545 . . . . . . . . . . 11 (𝜑 → (ℜ‘𝑆) ∈ ℝ)
4039renegcld 11056 . . . . . . . . . 10 (𝜑 → -(ℜ‘𝑆) ∈ ℝ)
4140recnd 10658 . . . . . . . . 9 (𝜑 → -(ℜ‘𝑆) ∈ ℂ)
42 mulcl 10610 . . . . . . . . 9 ((-(ℜ‘𝑆) ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℂ)
4341, 21, 42syl2an 598 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℂ)
4443subid1d 10975 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((-(ℜ‘𝑆) · (log‘𝑘)) − 0) = (-(ℜ‘𝑆) · (log‘𝑘)))
4527, 38, 443eqtrd 2837 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘)))
4645fveq2d 6649 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
4741adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → -(ℜ‘𝑆) ∈ ℂ)
4810, 12, 47cxpefd 25303 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
4946, 48eqtr4d 2836 . . . 4 ((𝜑𝑘 ∈ ℕ) → (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (𝑘𝑐-(ℜ‘𝑆)))
5018, 25, 493eqtrd 2837 . . 3 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) = (𝑘𝑐-(ℜ‘𝑆)))
517, 50eqtr4d 2836 . 2 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (abs‘(𝐹𝑘)))
5210, 15cxpcld 25299 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-𝑆) ∈ ℂ)
538, 52eqeltrd 2890 . 2 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
54 2rp 12382 . . . . . . 7 2 ∈ ℝ+
55 1re 10630 . . . . . . . 8 1 ∈ ℝ
56 resubcl 10939 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ) → (1 − (ℜ‘𝑆)) ∈ ℝ)
5755, 39, 56sylancr 590 . . . . . . 7 (𝜑 → (1 − (ℜ‘𝑆)) ∈ ℝ)
58 rpcxpcl 25267 . . . . . . 7 ((2 ∈ ℝ+ ∧ (1 − (ℜ‘𝑆)) ∈ ℝ) → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ+)
5954, 57, 58sylancr 590 . . . . . 6 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ+)
6059rpcnd 12421 . . . . 5 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ)
61 zetacvg.2 . . . . . . . . 9 (𝜑 → 1 < (ℜ‘𝑆))
62 recl 14461 . . . . . . . . . . . 12 (𝑆 ∈ ℂ → (ℜ‘𝑆) ∈ ℝ)
6362recnd 10658 . . . . . . . . . . 11 (𝑆 ∈ ℂ → (ℜ‘𝑆) ∈ ℂ)
6413, 63syl 17 . . . . . . . . . 10 (𝜑 → (ℜ‘𝑆) ∈ ℂ)
6564addid2d 10830 . . . . . . . . 9 (𝜑 → (0 + (ℜ‘𝑆)) = (ℜ‘𝑆))
6661, 65breqtrrd 5058 . . . . . . . 8 (𝜑 → 1 < (0 + (ℜ‘𝑆)))
67 0re 10632 . . . . . . . . . 10 0 ∈ ℝ
68 ltsubadd 11099 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
6955, 67, 68mp3an13 1449 . . . . . . . . 9 ((ℜ‘𝑆) ∈ ℝ → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
7039, 69syl 17 . . . . . . . 8 (𝜑 → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
7166, 70mpbird 260 . . . . . . 7 (𝜑 → (1 − (ℜ‘𝑆)) < 0)
72 2re 11699 . . . . . . . . 9 2 ∈ ℝ
73 1lt2 11796 . . . . . . . . 9 1 < 2
74 cxplt 25285 . . . . . . . . 9 (((2 ∈ ℝ ∧ 1 < 2) ∧ ((1 − (ℜ‘𝑆)) ∈ ℝ ∧ 0 ∈ ℝ)) → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7572, 73, 74mpanl12 701 . . . . . . . 8 (((1 − (ℜ‘𝑆)) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7657, 67, 75sylancl 589 . . . . . . 7 (𝜑 → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7771, 76mpbid 235 . . . . . 6 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0))
7859rprege0d 12426 . . . . . . 7 (𝜑 → ((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤ (2↑𝑐(1 − (ℜ‘𝑆)))))
79 absid 14648 . . . . . . 7 (((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤ (2↑𝑐(1 − (ℜ‘𝑆)))) → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) = (2↑𝑐(1 − (ℜ‘𝑆))))
8078, 79syl 17 . . . . . 6 (𝜑 → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) = (2↑𝑐(1 − (ℜ‘𝑆))))
81 2cn 11700 . . . . . . . . 9 2 ∈ ℂ
82 cxp0 25261 . . . . . . . . 9 (2 ∈ ℂ → (2↑𝑐0) = 1)
8381, 82ax-mp 5 . . . . . . . 8 (2↑𝑐0) = 1
8483eqcomi 2807 . . . . . . 7 1 = (2↑𝑐0)
8584a1i 11 . . . . . 6 (𝜑 → 1 = (2↑𝑐0))
8677, 80, 853brtr4d 5062 . . . . 5 (𝜑 → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) < 1)
87 oveq2 7143 . . . . . . 7 (𝑛 = 𝑚 → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
88 eqid 2798 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))
89 ovex 7168 . . . . . . 7 ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) ∈ V
9087, 88, 89fvmpt 6745 . . . . . 6 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
9190adantl 485 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
9260, 86, 91geolim 15218 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))))
93 seqex 13366 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ V
94 ovex 7168 . . . . 5 (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))) ∈ V
9593, 94breldm 5741 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ )
9692, 95syl 17 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ )
97 rpcxpcl 25267 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ -(ℜ‘𝑆) ∈ ℝ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ+)
9819, 40, 97syl2anr 599 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ+)
9998rpred 12419 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ)
1007, 99eqeltrd 2890 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) ∈ ℝ)
10198rpge0d 12423 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝑘𝑐-(ℜ‘𝑆)))
102101, 7breqtrrd 5058 . . . 4 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘))
103 nnre 11632 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
104103lep1d 11560 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1))
10519reeflogd 25215 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (exp‘(log‘𝑘)) = 𝑘)
106 peano2nn 11637 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
107106nnrpd 12417 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℝ+)
108107reeflogd 25215 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (exp‘(log‘(𝑘 + 1))) = (𝑘 + 1))
109104, 105, 1083brtr4d 5062 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1))))
110107relogcld 25214 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (log‘(𝑘 + 1)) ∈ ℝ)
111 efle 15463 . . . . . . . . . . . 12 (((log‘𝑘) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1)))))
11220, 110, 111syl2anc 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1)))))
113109, 112mpbird 260 . . . . . . . . . 10 (𝑘 ∈ ℕ → (log‘𝑘) ≤ (log‘(𝑘 + 1)))
114113adantl 485 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ≤ (log‘(𝑘 + 1)))
11520adantl 485 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℝ)
116106adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
117116nnrpd 12417 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ+)
118117relogcld 25214 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (log‘(𝑘 + 1)) ∈ ℝ)
11939adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (ℜ‘𝑆) ∈ ℝ)
12067a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
12155a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
122 0lt1 11151 . . . . . . . . . . . . 13 0 < 1
123122a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
124120, 121, 39, 123, 61lttrd 10790 . . . . . . . . . . 11 (𝜑 → 0 < (ℜ‘𝑆))
125124adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < (ℜ‘𝑆))
126 lemul2 11482 . . . . . . . . . 10 (((log‘𝑘) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ ∧ ((ℜ‘𝑆) ∈ ℝ ∧ 0 < (ℜ‘𝑆))) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1)))))
127115, 118, 119, 125, 126syl112anc 1371 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1)))))
128114, 127mpbid 235 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))))
129 remulcl 10611 . . . . . . . . . 10 (((ℜ‘𝑆) ∈ ℝ ∧ (log‘𝑘) ∈ ℝ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
13039, 20, 129syl2an 598 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
131 remulcl 10611 . . . . . . . . . 10 (((ℜ‘𝑆) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
13239, 110, 131syl2an 598 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
133130, 132lenegd 11208 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ↔ -((ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ -((ℜ‘𝑆) · (log‘𝑘))))
134128, 133mpbid 235 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → -((ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ -((ℜ‘𝑆) · (log‘𝑘)))
135110recnd 10658 . . . . . . . 8 (𝑘 ∈ ℕ → (log‘(𝑘 + 1)) ∈ ℂ)
136 mulneg1 11065 . . . . . . . 8 (((ℜ‘𝑆) ∈ ℂ ∧ (log‘(𝑘 + 1)) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) = -((ℜ‘𝑆) · (log‘(𝑘 + 1))))
13764, 135, 136syl2an 598 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) = -((ℜ‘𝑆) · (log‘(𝑘 + 1))))
138 mulneg1 11065 . . . . . . . 8 (((ℜ‘𝑆) ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘𝑘)) = -((ℜ‘𝑆) · (log‘𝑘)))
13964, 21, 138syl2an 598 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) = -((ℜ‘𝑆) · (log‘𝑘)))
140134, 137, 1393brtr4d 5062 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)))
141 remulcl 10611 . . . . . . . 8 ((-(ℜ‘𝑆) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
14240, 110, 141syl2an 598 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
143 remulcl 10611 . . . . . . . 8 ((-(ℜ‘𝑆) ∈ ℝ ∧ (log‘𝑘) ∈ ℝ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
14440, 20, 143syl2an 598 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
145 efle 15463 . . . . . . 7 (((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ ∧ (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ) → ((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))))
146142, 144, 145syl2anc 587 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))))
147140, 146mpbid 235 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
148 oveq1 7142 . . . . . . . 8 (𝑛 = (𝑘 + 1) → (𝑛𝑐-(ℜ‘𝑆)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
149 ovex 7168 . . . . . . . 8 ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)) ∈ V
150148, 4, 149fvmpt 6745 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
151116, 150syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
152116nncnd 11641 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
153116nnne0d 11675 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ≠ 0)
154152, 153, 47cxpefd 25303 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))))
155151, 154eqtrd 2833 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))))
1567, 48eqtrd 2833 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
157147, 155, 1563brtr4d 5062 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) ≤ ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘))
15857recnd 10658 . . . . . . . . . . 11 (𝜑 → (1 − (ℜ‘𝑆)) ∈ ℂ)
159158adantr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) ∈ ℂ)
160 nn0re 11894 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
161160adantl 485 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
162161recnd 10658 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
163159, 162mulcomd 10651 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((1 − (ℜ‘𝑆)) · 𝑚) = (𝑚 · (1 − (ℜ‘𝑆))))
164163oveq2d 7151 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = (2↑𝑐(𝑚 · (1 − (ℜ‘𝑆)))))
16554a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 2 ∈ ℝ+)
166165, 161, 159cxpmuld 25327 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐(𝑚 · (1 − (ℜ‘𝑆)))) = ((2↑𝑐𝑚)↑𝑐(1 − (ℜ‘𝑆))))
167 simpr 488 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
168 cxpexp 25259 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (2↑𝑐𝑚) = (2↑𝑚))
16981, 167, 168sylancr 590 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐𝑚) = (2↑𝑚))
170 ax-1cn 10584 . . . . . . . . . . 11 1 ∈ ℂ
17164adantr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (ℜ‘𝑆) ∈ ℂ)
172 negsub 10923 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (ℜ‘𝑆) ∈ ℂ) → (1 + -(ℜ‘𝑆)) = (1 − (ℜ‘𝑆)))
173170, 171, 172sylancr 590 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 + -(ℜ‘𝑆)) = (1 − (ℜ‘𝑆)))
174173eqcomd 2804 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) = (1 + -(ℜ‘𝑆)))
175169, 174oveq12d 7153 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐𝑚)↑𝑐(1 − (ℜ‘𝑆))) = ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))))
176164, 166, 1753eqtrd 2837 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))))
17757adantr 484 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) ∈ ℝ)
178165, 177, 162cxpmuld 25327 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚))
179 2nn 11698 . . . . . . . . . . 11 2 ∈ ℕ
180 nnexpcl 13438 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
181179, 180mpan 689 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℕ)
182181adantl 485 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
183182nncnd 11641 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℂ)
184182nnne0d 11675 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ≠ 0)
185 1cnd 10625 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
18641adantr 484 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → -(ℜ‘𝑆) ∈ ℂ)
187183, 184, 185, 186cxpaddd 25308 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))) = (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
188176, 178, 1873eqtr3d 2841 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
189 cxpexp 25259 . . . . . . 7 (((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
19060, 189sylan 583 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
191183cxp1d 25297 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚)↑𝑐1) = (2↑𝑚))
192191oveq1d 7150 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
193188, 190, 1923eqtr3d 2841 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
194179, 167, 180sylancr 590 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
195 oveq1 7142 . . . . . . . 8 (𝑛 = (2↑𝑚) → (𝑛𝑐-(ℜ‘𝑆)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
196 ovex 7168 . . . . . . . 8 ((2↑𝑚)↑𝑐-(ℜ‘𝑆)) ∈ V
197195, 4, 196fvmpt 6745 . . . . . . 7 ((2↑𝑚) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
198194, 197syl 17 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
199198oveq2d 7151 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚) · ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
200193, 91, 1993eqtr4d 2843 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑚) · ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚))))
201100, 102, 157, 200climcnds 15198 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))) ∈ dom ⇝ ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ ))
20296, 201mpbird 260 . 2 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))) ∈ dom ⇝ )
2031, 2, 51, 53, 202abscvgcvg 15166 1 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cmpt 5110  dom cdm 5519  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  +crp 12377  seqcseq 13364  cexp 13425  cre 14448  cim 14449  abscabs 14585  cli 14833  expce 15407  logclog 25146  𝑐ccxp 25147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149
This theorem is referenced by:  lgamgulmlem4  25617
  Copyright terms: Public domain W3C validator