Step | Hyp | Ref
| Expression |
1 | | nnuz 12550 |
. 2
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12281 |
. 2
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | oveq1 7262 |
. . . . 5
⊢ (𝑛 = 𝑘 → (𝑛↑𝑐-(ℜ‘𝑆)) = (𝑘↑𝑐-(ℜ‘𝑆))) |
4 | | eqid 2738 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆))) = (𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆))) |
5 | | ovex 7288 |
. . . . 5
⊢ (𝑘↑𝑐-(ℜ‘𝑆)) ∈ V |
6 | 3, 4, 5 | fvmpt 6857 |
. . . 4
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘↑𝑐-(ℜ‘𝑆))) |
7 | 6 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘↑𝑐-(ℜ‘𝑆))) |
8 | | zetacvg.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝑘↑𝑐-𝑆)) |
9 | | nncn 11911 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
10 | 9 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
11 | | nnne0 11937 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
12 | 11 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0) |
13 | | zetacvg.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ℂ) |
14 | 13 | negcld 11249 |
. . . . . . . 8
⊢ (𝜑 → -𝑆 ∈ ℂ) |
15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → -𝑆 ∈ ℂ) |
16 | 10, 12, 15 | cxpefd 25772 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘↑𝑐-𝑆) = (exp‘(-𝑆 · (log‘𝑘)))) |
17 | 8, 16 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (exp‘(-𝑆 · (log‘𝑘)))) |
18 | 17 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘𝑘)) = (abs‘(exp‘(-𝑆 · (log‘𝑘))))) |
19 | | nnrp 12670 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
20 | 19 | relogcld 25683 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ →
(log‘𝑘) ∈
ℝ) |
21 | 20 | recnd 10934 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(log‘𝑘) ∈
ℂ) |
22 | | mulcl 10886 |
. . . . . 6
⊢ ((-𝑆 ∈ ℂ ∧
(log‘𝑘) ∈
ℂ) → (-𝑆
· (log‘𝑘))
∈ ℂ) |
23 | 14, 21, 22 | syl2an 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-𝑆 · (log‘𝑘)) ∈ ℂ) |
24 | | absef 15834 |
. . . . 5
⊢ ((-𝑆 · (log‘𝑘)) ∈ ℂ →
(abs‘(exp‘(-𝑆
· (log‘𝑘)))) =
(exp‘(ℜ‘(-𝑆 · (log‘𝑘))))) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(abs‘(exp‘(-𝑆
· (log‘𝑘)))) =
(exp‘(ℜ‘(-𝑆 · (log‘𝑘))))) |
26 | | remul 14768 |
. . . . . . . 8
⊢ ((-𝑆 ∈ ℂ ∧
(log‘𝑘) ∈
ℂ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) −
((ℑ‘-𝑆)
· (ℑ‘(log‘𝑘))))) |
27 | 14, 21, 26 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) ·
(ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) ·
(ℑ‘(log‘𝑘))))) |
28 | 13 | renegd 14848 |
. . . . . . . . 9
⊢ (𝜑 → (ℜ‘-𝑆) = -(ℜ‘𝑆)) |
29 | 20 | rered 14863 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ →
(ℜ‘(log‘𝑘)) = (log‘𝑘)) |
30 | 28, 29 | oveqan12d 7274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℜ‘-𝑆) ·
(ℜ‘(log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘))) |
31 | 20 | reim0d 14864 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
(ℑ‘(log‘𝑘)) = 0) |
32 | 31 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ →
((ℑ‘-𝑆)
· (ℑ‘(log‘𝑘))) = ((ℑ‘-𝑆) · 0)) |
33 | | imcl 14750 |
. . . . . . . . . . . 12
⊢ (-𝑆 ∈ ℂ →
(ℑ‘-𝑆) ∈
ℝ) |
34 | 33 | recnd 10934 |
. . . . . . . . . . 11
⊢ (-𝑆 ∈ ℂ →
(ℑ‘-𝑆) ∈
ℂ) |
35 | 14, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ℑ‘-𝑆) ∈
ℂ) |
36 | 35 | mul01d 11104 |
. . . . . . . . 9
⊢ (𝜑 → ((ℑ‘-𝑆) · 0) =
0) |
37 | 32, 36 | sylan9eqr 2801 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
((ℑ‘-𝑆)
· (ℑ‘(log‘𝑘))) = 0) |
38 | 30, 37 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(((ℜ‘-𝑆)
· (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) ·
(ℑ‘(log‘𝑘)))) = ((-(ℜ‘𝑆) · (log‘𝑘)) − 0)) |
39 | 13 | recld 14833 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℜ‘𝑆) ∈
ℝ) |
40 | 39 | renegcld 11332 |
. . . . . . . . . 10
⊢ (𝜑 → -(ℜ‘𝑆) ∈
ℝ) |
41 | 40 | recnd 10934 |
. . . . . . . . 9
⊢ (𝜑 → -(ℜ‘𝑆) ∈
ℂ) |
42 | | mulcl 10886 |
. . . . . . . . 9
⊢
((-(ℜ‘𝑆)
∈ ℂ ∧ (log‘𝑘) ∈ ℂ) →
(-(ℜ‘𝑆) ·
(log‘𝑘)) ∈
ℂ) |
43 | 41, 21, 42 | syl2an 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈
ℂ) |
44 | 43 | subid1d 11251 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
((-(ℜ‘𝑆)
· (log‘𝑘))
− 0) = (-(ℜ‘𝑆) · (log‘𝑘))) |
45 | 27, 38, 44 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘))) |
46 | 45 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))) |
47 | 41 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → -(ℜ‘𝑆) ∈
ℂ) |
48 | 10, 12, 47 | cxpefd 25772 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘↑𝑐-(ℜ‘𝑆)) =
(exp‘(-(ℜ‘𝑆) · (log‘𝑘)))) |
49 | 46, 48 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (𝑘↑𝑐-(ℜ‘𝑆))) |
50 | 18, 25, 49 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘𝑘)) = (𝑘↑𝑐-(ℜ‘𝑆))) |
51 | 7, 50 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘𝑘) = (abs‘(𝐹‘𝑘))) |
52 | 10, 15 | cxpcld 25768 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘↑𝑐-𝑆) ∈ ℂ) |
53 | 8, 52 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
54 | | 2rp 12664 |
. . . . . . 7
⊢ 2 ∈
ℝ+ |
55 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
56 | | resubcl 11215 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ) → (1 −
(ℜ‘𝑆)) ∈
ℝ) |
57 | 55, 39, 56 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → (1 −
(ℜ‘𝑆)) ∈
ℝ) |
58 | | rpcxpcl 25736 |
. . . . . . 7
⊢ ((2
∈ ℝ+ ∧ (1 − (ℜ‘𝑆)) ∈ ℝ) →
(2↑𝑐(1 − (ℜ‘𝑆))) ∈
ℝ+) |
59 | 54, 57, 58 | sylancr 586 |
. . . . . 6
⊢ (𝜑 →
(2↑𝑐(1 − (ℜ‘𝑆))) ∈
ℝ+) |
60 | 59 | rpcnd 12703 |
. . . . 5
⊢ (𝜑 →
(2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ) |
61 | | zetacvg.2 |
. . . . . . . . 9
⊢ (𝜑 → 1 < (ℜ‘𝑆)) |
62 | | recl 14749 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ ℂ →
(ℜ‘𝑆) ∈
ℝ) |
63 | 62 | recnd 10934 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ ℂ →
(ℜ‘𝑆) ∈
ℂ) |
64 | 13, 63 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ℜ‘𝑆) ∈
ℂ) |
65 | 64 | addid2d 11106 |
. . . . . . . . 9
⊢ (𝜑 → (0 + (ℜ‘𝑆)) = (ℜ‘𝑆)) |
66 | 61, 65 | breqtrrd 5098 |
. . . . . . . 8
⊢ (𝜑 → 1 < (0 +
(ℜ‘𝑆))) |
67 | | 0re 10908 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
68 | | ltsubadd 11375 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 +
(ℜ‘𝑆)))) |
69 | 55, 67, 68 | mp3an13 1450 |
. . . . . . . . 9
⊢
((ℜ‘𝑆)
∈ ℝ → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 +
(ℜ‘𝑆)))) |
70 | 39, 69 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((1 −
(ℜ‘𝑆)) < 0
↔ 1 < (0 + (ℜ‘𝑆)))) |
71 | 66, 70 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → (1 −
(ℜ‘𝑆)) <
0) |
72 | | 2re 11977 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
73 | | 1lt2 12074 |
. . . . . . . . 9
⊢ 1 <
2 |
74 | | cxplt 25754 |
. . . . . . . . 9
⊢ (((2
∈ ℝ ∧ 1 < 2) ∧ ((1 − (ℜ‘𝑆)) ∈ ℝ ∧ 0 ∈
ℝ)) → ((1 − (ℜ‘𝑆)) < 0 ↔
(2↑𝑐(1 − (ℜ‘𝑆))) <
(2↑𝑐0))) |
75 | 72, 73, 74 | mpanl12 698 |
. . . . . . . 8
⊢ (((1
− (ℜ‘𝑆))
∈ ℝ ∧ 0 ∈ ℝ) → ((1 − (ℜ‘𝑆)) < 0 ↔
(2↑𝑐(1 − (ℜ‘𝑆))) <
(2↑𝑐0))) |
76 | 57, 67, 75 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → ((1 −
(ℜ‘𝑆)) < 0
↔ (2↑𝑐(1 − (ℜ‘𝑆))) <
(2↑𝑐0))) |
77 | 71, 76 | mpbid 231 |
. . . . . 6
⊢ (𝜑 →
(2↑𝑐(1 − (ℜ‘𝑆))) <
(2↑𝑐0)) |
78 | 59 | rprege0d 12708 |
. . . . . . 7
⊢ (𝜑 →
((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤
(2↑𝑐(1 − (ℜ‘𝑆))))) |
79 | | absid 14936 |
. . . . . . 7
⊢
(((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤
(2↑𝑐(1 − (ℜ‘𝑆)))) →
(abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) =
(2↑𝑐(1 − (ℜ‘𝑆)))) |
80 | 78, 79 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) =
(2↑𝑐(1 − (ℜ‘𝑆)))) |
81 | | 2cn 11978 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
82 | | cxp0 25730 |
. . . . . . . . 9
⊢ (2 ∈
ℂ → (2↑𝑐0) = 1) |
83 | 81, 82 | ax-mp 5 |
. . . . . . . 8
⊢
(2↑𝑐0) = 1 |
84 | 83 | eqcomi 2747 |
. . . . . . 7
⊢ 1 =
(2↑𝑐0) |
85 | 84 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 =
(2↑𝑐0)) |
86 | 77, 80, 85 | 3brtr4d 5102 |
. . . . 5
⊢ (𝜑 →
(abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) < 1) |
87 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((2↑𝑐(1
− (ℜ‘𝑆)))↑𝑛) = ((2↑𝑐(1 −
(ℜ‘𝑆)))↑𝑚)) |
88 | | eqid 2738 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛)) = (𝑛 ∈ ℕ0 ↦
((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛)) |
89 | | ovex 7288 |
. . . . . . 7
⊢
((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) ∈ V |
90 | 87, 88, 89 | fvmpt 6857 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((2↑𝑐(1 −
(ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 −
(ℜ‘𝑆)))↑𝑚)) |
91 | 90 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 −
(ℜ‘𝑆)))↑𝑚)) |
92 | 60, 86, 91 | geolim 15510 |
. . . 4
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 −
(2↑𝑐(1 − (ℜ‘𝑆)))))) |
93 | | seqex 13651 |
. . . . 5
⊢ seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((2↑𝑐(1 −
(ℜ‘𝑆)))↑𝑛))) ∈ V |
94 | | ovex 7288 |
. . . . 5
⊢ (1 / (1
− (2↑𝑐(1 − (ℜ‘𝑆))))) ∈ V |
95 | 93, 94 | breldm 5806 |
. . . 4
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((2↑𝑐(1 −
(ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 −
(2↑𝑐(1 − (ℜ‘𝑆))))) → seq0( + , (𝑛 ∈ ℕ0 ↦
((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ ) |
96 | 92, 95 | syl 17 |
. . 3
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ ) |
97 | | rpcxpcl 25736 |
. . . . . . 7
⊢ ((𝑘 ∈ ℝ+
∧ -(ℜ‘𝑆)
∈ ℝ) → (𝑘↑𝑐-(ℜ‘𝑆)) ∈
ℝ+) |
98 | 19, 40, 97 | syl2anr 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘↑𝑐-(ℜ‘𝑆)) ∈
ℝ+) |
99 | 98 | rpred 12701 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘↑𝑐-(ℜ‘𝑆)) ∈
ℝ) |
100 | 7, 99 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘𝑘) ∈ ℝ) |
101 | 98 | rpge0d 12705 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝑘↑𝑐-(ℜ‘𝑆))) |
102 | 101, 7 | breqtrrd 5098 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘𝑘)) |
103 | | nnre 11910 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
104 | 103 | lep1d 11836 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1)) |
105 | 19 | reeflogd 25684 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ →
(exp‘(log‘𝑘)) =
𝑘) |
106 | | peano2nn 11915 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
107 | 106 | nnrpd 12699 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℝ+) |
108 | 107 | reeflogd 25684 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ →
(exp‘(log‘(𝑘 +
1))) = (𝑘 +
1)) |
109 | 104, 105,
108 | 3brtr4d 5102 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ →
(exp‘(log‘𝑘))
≤ (exp‘(log‘(𝑘 + 1)))) |
110 | 107 | relogcld 25683 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ →
(log‘(𝑘 + 1)) ∈
ℝ) |
111 | | efle 15755 |
. . . . . . . . . . . 12
⊢
(((log‘𝑘)
∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) →
((log‘𝑘) ≤
(log‘(𝑘 + 1)) ↔
(exp‘(log‘𝑘))
≤ (exp‘(log‘(𝑘 + 1))))) |
112 | 20, 110, 111 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ →
((log‘𝑘) ≤
(log‘(𝑘 + 1)) ↔
(exp‘(log‘𝑘))
≤ (exp‘(log‘(𝑘 + 1))))) |
113 | 109, 112 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
(log‘𝑘) ≤
(log‘(𝑘 +
1))) |
114 | 113 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (log‘𝑘) ≤ (log‘(𝑘 + 1))) |
115 | 20 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (log‘𝑘) ∈
ℝ) |
116 | 106 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ) |
117 | 116 | nnrpd 12699 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈
ℝ+) |
118 | 117 | relogcld 25683 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (log‘(𝑘 + 1)) ∈
ℝ) |
119 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (ℜ‘𝑆) ∈
ℝ) |
120 | 67 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
ℝ) |
121 | 55 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ) |
122 | | 0lt1 11427 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
123 | 122 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 1) |
124 | 120, 121,
39, 123, 61 | lttrd 11066 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < (ℜ‘𝑆)) |
125 | 124 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 <
(ℜ‘𝑆)) |
126 | | lemul2 11758 |
. . . . . . . . . 10
⊢
(((log‘𝑘)
∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ ∧
((ℜ‘𝑆) ∈
ℝ ∧ 0 < (ℜ‘𝑆))) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))))) |
127 | 115, 118,
119, 125, 126 | syl112anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔
((ℜ‘𝑆) ·
(log‘𝑘)) ≤
((ℜ‘𝑆) ·
(log‘(𝑘 +
1))))) |
128 | 114, 127 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1)))) |
129 | | remulcl 10887 |
. . . . . . . . . 10
⊢
(((ℜ‘𝑆)
∈ ℝ ∧ (log‘𝑘) ∈ ℝ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈
ℝ) |
130 | 39, 20, 129 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈
ℝ) |
131 | | remulcl 10887 |
. . . . . . . . . 10
⊢
(((ℜ‘𝑆)
∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) →
((ℜ‘𝑆) ·
(log‘(𝑘 + 1))) ∈
ℝ) |
132 | 39, 110, 131 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈
ℝ) |
133 | 130, 132 | lenegd 11484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ↔
-((ℜ‘𝑆) ·
(log‘(𝑘 + 1))) ≤
-((ℜ‘𝑆) ·
(log‘𝑘)))) |
134 | 128, 133 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → -((ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤
-((ℜ‘𝑆) ·
(log‘𝑘))) |
135 | 110 | recnd 10934 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ →
(log‘(𝑘 + 1)) ∈
ℂ) |
136 | | mulneg1 11341 |
. . . . . . . 8
⊢
(((ℜ‘𝑆)
∈ ℂ ∧ (log‘(𝑘 + 1)) ∈ ℂ) →
(-(ℜ‘𝑆) ·
(log‘(𝑘 + 1))) =
-((ℜ‘𝑆) ·
(log‘(𝑘 +
1)))) |
137 | 64, 135, 136 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) = -((ℜ‘𝑆) · (log‘(𝑘 + 1)))) |
138 | | mulneg1 11341 |
. . . . . . . 8
⊢
(((ℜ‘𝑆)
∈ ℂ ∧ (log‘𝑘) ∈ ℂ) →
(-(ℜ‘𝑆) ·
(log‘𝑘)) =
-((ℜ‘𝑆) ·
(log‘𝑘))) |
139 | 64, 21, 138 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) = -((ℜ‘𝑆) · (log‘𝑘))) |
140 | 134, 137,
139 | 3brtr4d 5102 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤
(-(ℜ‘𝑆) ·
(log‘𝑘))) |
141 | | remulcl 10887 |
. . . . . . . 8
⊢
((-(ℜ‘𝑆)
∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) →
(-(ℜ‘𝑆) ·
(log‘(𝑘 + 1))) ∈
ℝ) |
142 | 40, 110, 141 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈
ℝ) |
143 | | remulcl 10887 |
. . . . . . . 8
⊢
((-(ℜ‘𝑆)
∈ ℝ ∧ (log‘𝑘) ∈ ℝ) →
(-(ℜ‘𝑆) ·
(log‘𝑘)) ∈
ℝ) |
144 | 40, 20, 143 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈
ℝ) |
145 | | efle 15755 |
. . . . . . 7
⊢
(((-(ℜ‘𝑆)
· (log‘(𝑘 +
1))) ∈ ℝ ∧ (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ) →
((-(ℜ‘𝑆)
· (log‘(𝑘 +
1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤
(exp‘(-(ℜ‘𝑆) · (log‘𝑘))))) |
146 | 142, 144,
145 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
((-(ℜ‘𝑆)
· (log‘(𝑘 +
1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤
(exp‘(-(ℜ‘𝑆) · (log‘𝑘))))) |
147 | 140, 146 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤
(exp‘(-(ℜ‘𝑆) · (log‘𝑘)))) |
148 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑛 = (𝑘 + 1) → (𝑛↑𝑐-(ℜ‘𝑆)) = ((𝑘 +
1)↑𝑐-(ℜ‘𝑆))) |
149 | | ovex 7288 |
. . . . . . . 8
⊢ ((𝑘 +
1)↑𝑐-(ℜ‘𝑆)) ∈ V |
150 | 148, 4, 149 | fvmpt 6857 |
. . . . . . 7
⊢ ((𝑘 + 1) ∈ ℕ →
((𝑛 ∈ ℕ ↦
(𝑛↑𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 +
1)↑𝑐-(ℜ‘𝑆))) |
151 | 116, 150 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 +
1)↑𝑐-(ℜ‘𝑆))) |
152 | 116 | nncnd 11919 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ) |
153 | 116 | nnne0d 11953 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ≠ 0) |
154 | 152, 153,
47 | cxpefd 25772 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 +
1)↑𝑐-(ℜ‘𝑆)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1))))) |
155 | 151, 154 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1))))) |
156 | 7, 48 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘𝑘) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))) |
157 | 147, 155,
156 | 3brtr4d 5102 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) ≤ ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘𝑘)) |
158 | 57 | recnd 10934 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 −
(ℜ‘𝑆)) ∈
ℂ) |
159 | 158 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (1
− (ℜ‘𝑆))
∈ ℂ) |
160 | | nn0re 12172 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℝ) |
161 | 160 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℝ) |
162 | 161 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℂ) |
163 | 159, 162 | mulcomd 10927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((1
− (ℜ‘𝑆))
· 𝑚) = (𝑚 · (1 −
(ℜ‘𝑆)))) |
164 | 163 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = (2↑𝑐(𝑚 · (1 −
(ℜ‘𝑆))))) |
165 | 54 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 2 ∈
ℝ+) |
166 | 165, 161,
159 | cxpmuld 25796 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(2↑𝑐(𝑚 · (1 − (ℜ‘𝑆)))) =
((2↑𝑐𝑚)↑𝑐(1 −
(ℜ‘𝑆)))) |
167 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
168 | | cxpexp 25728 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ 𝑚
∈ ℕ0) → (2↑𝑐𝑚) = (2↑𝑚)) |
169 | 81, 167, 168 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(2↑𝑐𝑚) = (2↑𝑚)) |
170 | | ax-1cn 10860 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
171 | 64 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(ℜ‘𝑆) ∈
ℂ) |
172 | | negsub 11199 |
. . . . . . . . . . 11
⊢ ((1
∈ ℂ ∧ (ℜ‘𝑆) ∈ ℂ) → (1 +
-(ℜ‘𝑆)) = (1
− (ℜ‘𝑆))) |
173 | 170, 171,
172 | sylancr 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (1 +
-(ℜ‘𝑆)) = (1
− (ℜ‘𝑆))) |
174 | 173 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (1
− (ℜ‘𝑆)) =
(1 + -(ℜ‘𝑆))) |
175 | 169, 174 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((2↑𝑐𝑚)↑𝑐(1 −
(ℜ‘𝑆))) =
((2↑𝑚)↑𝑐(1 +
-(ℜ‘𝑆)))) |
176 | 164, 166,
175 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑚)↑𝑐(1 +
-(ℜ‘𝑆)))) |
177 | 57 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (1
− (ℜ‘𝑆))
∈ ℝ) |
178 | 165, 177,
162 | cxpmuld 25796 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑐(1 −
(ℜ‘𝑆)))↑𝑐𝑚)) |
179 | | 2nn 11976 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ |
180 | | nnexpcl 13723 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) |
181 | 179, 180 | mpan 686 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (2↑𝑚) ∈
ℕ) |
182 | 181 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(2↑𝑚) ∈
ℕ) |
183 | 182 | nncnd 11919 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(2↑𝑚) ∈
ℂ) |
184 | 182 | nnne0d 11953 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(2↑𝑚) ≠
0) |
185 | | 1cnd 10901 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 1 ∈
ℂ) |
186 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
-(ℜ‘𝑆) ∈
ℂ) |
187 | 183, 184,
185, 186 | cxpaddd 25777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((2↑𝑚)↑𝑐(1 +
-(ℜ‘𝑆))) =
(((2↑𝑚)↑𝑐1) ·
((2↑𝑚)↑𝑐-(ℜ‘𝑆)))) |
188 | 176, 178,
187 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = (((2↑𝑚)↑𝑐1) ·
((2↑𝑚)↑𝑐-(ℜ‘𝑆)))) |
189 | | cxpexp 25728 |
. . . . . . 7
⊢
(((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ ∧ 𝑚 ∈ ℕ0) →
((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) =
((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚)) |
190 | 60, 189 | sylan 579 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) =
((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚)) |
191 | 183 | cxp1d 25766 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((2↑𝑚)↑𝑐1) = (2↑𝑚)) |
192 | 191 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(((2↑𝑚)↑𝑐1) ·
((2↑𝑚)↑𝑐-(ℜ‘𝑆))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))) |
193 | 188, 190,
192 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))) |
194 | 179, 167,
180 | sylancr 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(2↑𝑚) ∈
ℕ) |
195 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑛 = (2↑𝑚) → (𝑛↑𝑐-(ℜ‘𝑆)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆))) |
196 | | ovex 7288 |
. . . . . . . 8
⊢
((2↑𝑚)↑𝑐-(ℜ‘𝑆)) ∈ V |
197 | 195, 4, 196 | fvmpt 6857 |
. . . . . . 7
⊢
((2↑𝑚) ∈
ℕ → ((𝑛 ∈
ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆))) |
198 | 194, 197 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆))) |
199 | 198 | oveq2d 7271 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((2↑𝑚) ·
((𝑛 ∈ ℕ ↦
(𝑛↑𝑐-(ℜ‘𝑆)))‘(2↑𝑚))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))) |
200 | 193, 91, 199 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑚) · ((𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))‘(2↑𝑚)))) |
201 | 100, 102,
157, 200 | climcnds 15491 |
. . 3
⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))) ∈ dom ⇝ ↔
seq0( + , (𝑛 ∈
ℕ0 ↦ ((2↑𝑐(1 −
(ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ )) |
202 | 96, 201 | mpbird 256 |
. 2
⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑𝑐-(ℜ‘𝑆)))) ∈ dom ⇝
) |
203 | 1, 2, 51, 53, 202 | abscvgcvg 15459 |
1
⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝
) |