MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zetacvg Structured version   Visualization version   GIF version

Theorem zetacvg 26952
Description: The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
zetacvg.1 (𝜑𝑆 ∈ ℂ)
zetacvg.2 (𝜑 → 1 < (ℜ‘𝑆))
zetacvg.3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝑘𝑐-𝑆))
Assertion
Ref Expression
zetacvg (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑆,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem zetacvg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12775 . 2 ℕ = (ℤ‘1)
2 1zzd 12503 . 2 (𝜑 → 1 ∈ ℤ)
3 oveq1 7353 . . . . 5 (𝑛 = 𝑘 → (𝑛𝑐-(ℜ‘𝑆)) = (𝑘𝑐-(ℜ‘𝑆)))
4 eqid 2731 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆))) = (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))
5 ovex 7379 . . . . 5 (𝑘𝑐-(ℜ‘𝑆)) ∈ V
63, 4, 5fvmpt 6929 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘𝑐-(ℜ‘𝑆)))
76adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘𝑐-(ℜ‘𝑆)))
8 zetacvg.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝑘𝑐-𝑆))
9 nncn 12133 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
109adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
11 nnne0 12159 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
1211adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
13 zetacvg.1 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
1413negcld 11459 . . . . . . . 8 (𝜑 → -𝑆 ∈ ℂ)
1514adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → -𝑆 ∈ ℂ)
1610, 12, 15cxpefd 26648 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-𝑆) = (exp‘(-𝑆 · (log‘𝑘))))
178, 16eqtrd 2766 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (exp‘(-𝑆 · (log‘𝑘))))
1817fveq2d 6826 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) = (abs‘(exp‘(-𝑆 · (log‘𝑘)))))
19 nnrp 12902 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
2019relogcld 26559 . . . . . . 7 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℝ)
2120recnd 11140 . . . . . 6 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℂ)
22 mulcl 11090 . . . . . 6 ((-𝑆 ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-𝑆 · (log‘𝑘)) ∈ ℂ)
2314, 21, 22syl2an 596 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (-𝑆 · (log‘𝑘)) ∈ ℂ)
24 absef 16106 . . . . 5 ((-𝑆 · (log‘𝑘)) ∈ ℂ → (abs‘(exp‘(-𝑆 · (log‘𝑘)))) = (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))))
2523, 24syl 17 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(exp‘(-𝑆 · (log‘𝑘)))) = (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))))
26 remul 15036 . . . . . . . 8 ((-𝑆 ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))))
2714, 21, 26syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))))
2813renegd 15116 . . . . . . . . 9 (𝜑 → (ℜ‘-𝑆) = -(ℜ‘𝑆))
2920rered 15131 . . . . . . . . 9 (𝑘 ∈ ℕ → (ℜ‘(log‘𝑘)) = (log‘𝑘))
3028, 29oveqan12d 7365 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘)))
3120reim0d 15132 . . . . . . . . . 10 (𝑘 ∈ ℕ → (ℑ‘(log‘𝑘)) = 0)
3231oveq2d 7362 . . . . . . . . 9 (𝑘 ∈ ℕ → ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘))) = ((ℑ‘-𝑆) · 0))
33 imcl 15018 . . . . . . . . . . . 12 (-𝑆 ∈ ℂ → (ℑ‘-𝑆) ∈ ℝ)
3433recnd 11140 . . . . . . . . . . 11 (-𝑆 ∈ ℂ → (ℑ‘-𝑆) ∈ ℂ)
3514, 34syl 17 . . . . . . . . . 10 (𝜑 → (ℑ‘-𝑆) ∈ ℂ)
3635mul01d 11312 . . . . . . . . 9 (𝜑 → ((ℑ‘-𝑆) · 0) = 0)
3732, 36sylan9eqr 2788 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘))) = 0)
3830, 37oveq12d 7364 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))) = ((-(ℜ‘𝑆) · (log‘𝑘)) − 0))
3913recld 15101 . . . . . . . . . . 11 (𝜑 → (ℜ‘𝑆) ∈ ℝ)
4039renegcld 11544 . . . . . . . . . 10 (𝜑 → -(ℜ‘𝑆) ∈ ℝ)
4140recnd 11140 . . . . . . . . 9 (𝜑 → -(ℜ‘𝑆) ∈ ℂ)
42 mulcl 11090 . . . . . . . . 9 ((-(ℜ‘𝑆) ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℂ)
4341, 21, 42syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℂ)
4443subid1d 11461 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((-(ℜ‘𝑆) · (log‘𝑘)) − 0) = (-(ℜ‘𝑆) · (log‘𝑘)))
4527, 38, 443eqtrd 2770 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘)))
4645fveq2d 6826 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
4741adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → -(ℜ‘𝑆) ∈ ℂ)
4810, 12, 47cxpefd 26648 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
4946, 48eqtr4d 2769 . . . 4 ((𝜑𝑘 ∈ ℕ) → (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (𝑘𝑐-(ℜ‘𝑆)))
5018, 25, 493eqtrd 2770 . . 3 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) = (𝑘𝑐-(ℜ‘𝑆)))
517, 50eqtr4d 2769 . 2 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (abs‘(𝐹𝑘)))
5210, 15cxpcld 26644 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-𝑆) ∈ ℂ)
538, 52eqeltrd 2831 . 2 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
54 2rp 12895 . . . . . . 7 2 ∈ ℝ+
55 1re 11112 . . . . . . . 8 1 ∈ ℝ
56 resubcl 11425 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ) → (1 − (ℜ‘𝑆)) ∈ ℝ)
5755, 39, 56sylancr 587 . . . . . . 7 (𝜑 → (1 − (ℜ‘𝑆)) ∈ ℝ)
58 rpcxpcl 26612 . . . . . . 7 ((2 ∈ ℝ+ ∧ (1 − (ℜ‘𝑆)) ∈ ℝ) → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ+)
5954, 57, 58sylancr 587 . . . . . 6 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ+)
6059rpcnd 12936 . . . . 5 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ)
61 zetacvg.2 . . . . . . . . 9 (𝜑 → 1 < (ℜ‘𝑆))
62 recl 15017 . . . . . . . . . . . 12 (𝑆 ∈ ℂ → (ℜ‘𝑆) ∈ ℝ)
6362recnd 11140 . . . . . . . . . . 11 (𝑆 ∈ ℂ → (ℜ‘𝑆) ∈ ℂ)
6413, 63syl 17 . . . . . . . . . 10 (𝜑 → (ℜ‘𝑆) ∈ ℂ)
6564addlidd 11314 . . . . . . . . 9 (𝜑 → (0 + (ℜ‘𝑆)) = (ℜ‘𝑆))
6661, 65breqtrrd 5117 . . . . . . . 8 (𝜑 → 1 < (0 + (ℜ‘𝑆)))
67 0re 11114 . . . . . . . . . 10 0 ∈ ℝ
68 ltsubadd 11587 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
6955, 67, 68mp3an13 1454 . . . . . . . . 9 ((ℜ‘𝑆) ∈ ℝ → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
7039, 69syl 17 . . . . . . . 8 (𝜑 → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
7166, 70mpbird 257 . . . . . . 7 (𝜑 → (1 − (ℜ‘𝑆)) < 0)
72 2re 12199 . . . . . . . . 9 2 ∈ ℝ
73 1lt2 12291 . . . . . . . . 9 1 < 2
74 cxplt 26630 . . . . . . . . 9 (((2 ∈ ℝ ∧ 1 < 2) ∧ ((1 − (ℜ‘𝑆)) ∈ ℝ ∧ 0 ∈ ℝ)) → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7572, 73, 74mpanl12 702 . . . . . . . 8 (((1 − (ℜ‘𝑆)) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7657, 67, 75sylancl 586 . . . . . . 7 (𝜑 → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7771, 76mpbid 232 . . . . . 6 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0))
7859rprege0d 12941 . . . . . . 7 (𝜑 → ((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤ (2↑𝑐(1 − (ℜ‘𝑆)))))
79 absid 15203 . . . . . . 7 (((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤ (2↑𝑐(1 − (ℜ‘𝑆)))) → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) = (2↑𝑐(1 − (ℜ‘𝑆))))
8078, 79syl 17 . . . . . 6 (𝜑 → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) = (2↑𝑐(1 − (ℜ‘𝑆))))
81 2cn 12200 . . . . . . . . 9 2 ∈ ℂ
82 cxp0 26606 . . . . . . . . 9 (2 ∈ ℂ → (2↑𝑐0) = 1)
8381, 82ax-mp 5 . . . . . . . 8 (2↑𝑐0) = 1
8483eqcomi 2740 . . . . . . 7 1 = (2↑𝑐0)
8584a1i 11 . . . . . 6 (𝜑 → 1 = (2↑𝑐0))
8677, 80, 853brtr4d 5121 . . . . 5 (𝜑 → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) < 1)
87 oveq2 7354 . . . . . . 7 (𝑛 = 𝑚 → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
88 eqid 2731 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))
89 ovex 7379 . . . . . . 7 ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) ∈ V
9087, 88, 89fvmpt 6929 . . . . . 6 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
9190adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
9260, 86, 91geolim 15777 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))))
93 seqex 13910 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ V
94 ovex 7379 . . . . 5 (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))) ∈ V
9593, 94breldm 5847 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ )
9692, 95syl 17 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ )
97 rpcxpcl 26612 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ -(ℜ‘𝑆) ∈ ℝ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ+)
9819, 40, 97syl2anr 597 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ+)
9998rpred 12934 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ)
1007, 99eqeltrd 2831 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) ∈ ℝ)
10198rpge0d 12938 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝑘𝑐-(ℜ‘𝑆)))
102101, 7breqtrrd 5117 . . . 4 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘))
103 nnre 12132 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
104103lep1d 12053 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1))
10519reeflogd 26560 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (exp‘(log‘𝑘)) = 𝑘)
106 peano2nn 12137 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
107106nnrpd 12932 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℝ+)
108107reeflogd 26560 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (exp‘(log‘(𝑘 + 1))) = (𝑘 + 1))
109104, 105, 1083brtr4d 5121 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1))))
110107relogcld 26559 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (log‘(𝑘 + 1)) ∈ ℝ)
111 efle 16027 . . . . . . . . . . . 12 (((log‘𝑘) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1)))))
11220, 110, 111syl2anc 584 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1)))))
113109, 112mpbird 257 . . . . . . . . . 10 (𝑘 ∈ ℕ → (log‘𝑘) ≤ (log‘(𝑘 + 1)))
114113adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ≤ (log‘(𝑘 + 1)))
11520adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℝ)
116106adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
117116nnrpd 12932 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ+)
118117relogcld 26559 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (log‘(𝑘 + 1)) ∈ ℝ)
11939adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (ℜ‘𝑆) ∈ ℝ)
12067a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
12155a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
122 0lt1 11639 . . . . . . . . . . . . 13 0 < 1
123122a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
124120, 121, 39, 123, 61lttrd 11274 . . . . . . . . . . 11 (𝜑 → 0 < (ℜ‘𝑆))
125124adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < (ℜ‘𝑆))
126 lemul2 11974 . . . . . . . . . 10 (((log‘𝑘) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ ∧ ((ℜ‘𝑆) ∈ ℝ ∧ 0 < (ℜ‘𝑆))) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1)))))
127115, 118, 119, 125, 126syl112anc 1376 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1)))))
128114, 127mpbid 232 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))))
129 remulcl 11091 . . . . . . . . . 10 (((ℜ‘𝑆) ∈ ℝ ∧ (log‘𝑘) ∈ ℝ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
13039, 20, 129syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
131 remulcl 11091 . . . . . . . . . 10 (((ℜ‘𝑆) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
13239, 110, 131syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
133130, 132lenegd 11696 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ↔ -((ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ -((ℜ‘𝑆) · (log‘𝑘))))
134128, 133mpbid 232 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → -((ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ -((ℜ‘𝑆) · (log‘𝑘)))
135110recnd 11140 . . . . . . . 8 (𝑘 ∈ ℕ → (log‘(𝑘 + 1)) ∈ ℂ)
136 mulneg1 11553 . . . . . . . 8 (((ℜ‘𝑆) ∈ ℂ ∧ (log‘(𝑘 + 1)) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) = -((ℜ‘𝑆) · (log‘(𝑘 + 1))))
13764, 135, 136syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) = -((ℜ‘𝑆) · (log‘(𝑘 + 1))))
138 mulneg1 11553 . . . . . . . 8 (((ℜ‘𝑆) ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘𝑘)) = -((ℜ‘𝑆) · (log‘𝑘)))
13964, 21, 138syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) = -((ℜ‘𝑆) · (log‘𝑘)))
140134, 137, 1393brtr4d 5121 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)))
141 remulcl 11091 . . . . . . . 8 ((-(ℜ‘𝑆) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
14240, 110, 141syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
143 remulcl 11091 . . . . . . . 8 ((-(ℜ‘𝑆) ∈ ℝ ∧ (log‘𝑘) ∈ ℝ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
14440, 20, 143syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
145 efle 16027 . . . . . . 7 (((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ ∧ (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ) → ((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))))
146142, 144, 145syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))))
147140, 146mpbid 232 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
148 oveq1 7353 . . . . . . . 8 (𝑛 = (𝑘 + 1) → (𝑛𝑐-(ℜ‘𝑆)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
149 ovex 7379 . . . . . . . 8 ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)) ∈ V
150148, 4, 149fvmpt 6929 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
151116, 150syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
152116nncnd 12141 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
153116nnne0d 12175 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ≠ 0)
154152, 153, 47cxpefd 26648 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))))
155151, 154eqtrd 2766 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))))
1567, 48eqtrd 2766 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
157147, 155, 1563brtr4d 5121 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) ≤ ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘))
15857recnd 11140 . . . . . . . . . . 11 (𝜑 → (1 − (ℜ‘𝑆)) ∈ ℂ)
159158adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) ∈ ℂ)
160 nn0re 12390 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
161160adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
162161recnd 11140 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
163159, 162mulcomd 11133 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((1 − (ℜ‘𝑆)) · 𝑚) = (𝑚 · (1 − (ℜ‘𝑆))))
164163oveq2d 7362 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = (2↑𝑐(𝑚 · (1 − (ℜ‘𝑆)))))
16554a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 2 ∈ ℝ+)
166165, 161, 159cxpmuld 26673 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐(𝑚 · (1 − (ℜ‘𝑆)))) = ((2↑𝑐𝑚)↑𝑐(1 − (ℜ‘𝑆))))
167 simpr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
168 cxpexp 26604 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (2↑𝑐𝑚) = (2↑𝑚))
16981, 167, 168sylancr 587 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐𝑚) = (2↑𝑚))
170 ax-1cn 11064 . . . . . . . . . . 11 1 ∈ ℂ
17164adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (ℜ‘𝑆) ∈ ℂ)
172 negsub 11409 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (ℜ‘𝑆) ∈ ℂ) → (1 + -(ℜ‘𝑆)) = (1 − (ℜ‘𝑆)))
173170, 171, 172sylancr 587 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 + -(ℜ‘𝑆)) = (1 − (ℜ‘𝑆)))
174173eqcomd 2737 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) = (1 + -(ℜ‘𝑆)))
175169, 174oveq12d 7364 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐𝑚)↑𝑐(1 − (ℜ‘𝑆))) = ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))))
176164, 166, 1753eqtrd 2770 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))))
17757adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) ∈ ℝ)
178165, 177, 162cxpmuld 26673 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚))
179 2nn 12198 . . . . . . . . . . 11 2 ∈ ℕ
180 nnexpcl 13981 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
181179, 180mpan 690 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℕ)
182181adantl 481 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
183182nncnd 12141 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℂ)
184182nnne0d 12175 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ≠ 0)
185 1cnd 11107 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
18641adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → -(ℜ‘𝑆) ∈ ℂ)
187183, 184, 185, 186cxpaddd 26653 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))) = (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
188176, 178, 1873eqtr3d 2774 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
189 cxpexp 26604 . . . . . . 7 (((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
19060, 189sylan 580 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
191183cxp1d 26642 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚)↑𝑐1) = (2↑𝑚))
192191oveq1d 7361 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
193188, 190, 1923eqtr3d 2774 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
194179, 167, 180sylancr 587 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
195 oveq1 7353 . . . . . . . 8 (𝑛 = (2↑𝑚) → (𝑛𝑐-(ℜ‘𝑆)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
196 ovex 7379 . . . . . . . 8 ((2↑𝑚)↑𝑐-(ℜ‘𝑆)) ∈ V
197195, 4, 196fvmpt 6929 . . . . . . 7 ((2↑𝑚) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
198194, 197syl 17 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
199198oveq2d 7362 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚) · ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
200193, 91, 1993eqtr4d 2776 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑚) · ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚))))
201100, 102, 157, 200climcnds 15758 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))) ∈ dom ⇝ ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ ))
20296, 201mpbird 257 . 2 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))) ∈ dom ⇝ )
2031, 2, 51, 53, 202abscvgcvg 15726 1 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cmpt 5170  dom cdm 5614  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  +crp 12890  seqcseq 13908  cexp 13968  cre 15004  cim 15005  abscabs 15141  cli 15391  expce 15968  logclog 26490  𝑐ccxp 26491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493
This theorem is referenced by:  lgamgulmlem4  26969
  Copyright terms: Public domain W3C validator