MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zetacvg Structured version   Visualization version   GIF version

Theorem zetacvg 27072
Description: The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
zetacvg.1 (𝜑𝑆 ∈ ℂ)
zetacvg.2 (𝜑 → 1 < (ℜ‘𝑆))
zetacvg.3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝑘𝑐-𝑆))
Assertion
Ref Expression
zetacvg (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑆,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem zetacvg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12918 . 2 ℕ = (ℤ‘1)
2 1zzd 12645 . 2 (𝜑 → 1 ∈ ℤ)
3 oveq1 7437 . . . . 5 (𝑛 = 𝑘 → (𝑛𝑐-(ℜ‘𝑆)) = (𝑘𝑐-(ℜ‘𝑆)))
4 eqid 2734 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆))) = (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))
5 ovex 7463 . . . . 5 (𝑘𝑐-(ℜ‘𝑆)) ∈ V
63, 4, 5fvmpt 7015 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘𝑐-(ℜ‘𝑆)))
76adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘𝑐-(ℜ‘𝑆)))
8 zetacvg.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝑘𝑐-𝑆))
9 nncn 12271 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
109adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
11 nnne0 12297 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
1211adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
13 zetacvg.1 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
1413negcld 11604 . . . . . . . 8 (𝜑 → -𝑆 ∈ ℂ)
1514adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → -𝑆 ∈ ℂ)
1610, 12, 15cxpefd 26768 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-𝑆) = (exp‘(-𝑆 · (log‘𝑘))))
178, 16eqtrd 2774 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (exp‘(-𝑆 · (log‘𝑘))))
1817fveq2d 6910 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) = (abs‘(exp‘(-𝑆 · (log‘𝑘)))))
19 nnrp 13043 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
2019relogcld 26679 . . . . . . 7 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℝ)
2120recnd 11286 . . . . . 6 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℂ)
22 mulcl 11236 . . . . . 6 ((-𝑆 ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-𝑆 · (log‘𝑘)) ∈ ℂ)
2314, 21, 22syl2an 596 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (-𝑆 · (log‘𝑘)) ∈ ℂ)
24 absef 16229 . . . . 5 ((-𝑆 · (log‘𝑘)) ∈ ℂ → (abs‘(exp‘(-𝑆 · (log‘𝑘)))) = (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))))
2523, 24syl 17 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(exp‘(-𝑆 · (log‘𝑘)))) = (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))))
26 remul 15164 . . . . . . . 8 ((-𝑆 ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))))
2714, 21, 26syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))))
2813renegd 15244 . . . . . . . . 9 (𝜑 → (ℜ‘-𝑆) = -(ℜ‘𝑆))
2920rered 15259 . . . . . . . . 9 (𝑘 ∈ ℕ → (ℜ‘(log‘𝑘)) = (log‘𝑘))
3028, 29oveqan12d 7449 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘)))
3120reim0d 15260 . . . . . . . . . 10 (𝑘 ∈ ℕ → (ℑ‘(log‘𝑘)) = 0)
3231oveq2d 7446 . . . . . . . . 9 (𝑘 ∈ ℕ → ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘))) = ((ℑ‘-𝑆) · 0))
33 imcl 15146 . . . . . . . . . . . 12 (-𝑆 ∈ ℂ → (ℑ‘-𝑆) ∈ ℝ)
3433recnd 11286 . . . . . . . . . . 11 (-𝑆 ∈ ℂ → (ℑ‘-𝑆) ∈ ℂ)
3514, 34syl 17 . . . . . . . . . 10 (𝜑 → (ℑ‘-𝑆) ∈ ℂ)
3635mul01d 11457 . . . . . . . . 9 (𝜑 → ((ℑ‘-𝑆) · 0) = 0)
3732, 36sylan9eqr 2796 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘))) = 0)
3830, 37oveq12d 7448 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))) = ((-(ℜ‘𝑆) · (log‘𝑘)) − 0))
3913recld 15229 . . . . . . . . . . 11 (𝜑 → (ℜ‘𝑆) ∈ ℝ)
4039renegcld 11687 . . . . . . . . . 10 (𝜑 → -(ℜ‘𝑆) ∈ ℝ)
4140recnd 11286 . . . . . . . . 9 (𝜑 → -(ℜ‘𝑆) ∈ ℂ)
42 mulcl 11236 . . . . . . . . 9 ((-(ℜ‘𝑆) ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℂ)
4341, 21, 42syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℂ)
4443subid1d 11606 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((-(ℜ‘𝑆) · (log‘𝑘)) − 0) = (-(ℜ‘𝑆) · (log‘𝑘)))
4527, 38, 443eqtrd 2778 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘)))
4645fveq2d 6910 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
4741adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → -(ℜ‘𝑆) ∈ ℂ)
4810, 12, 47cxpefd 26768 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
4946, 48eqtr4d 2777 . . . 4 ((𝜑𝑘 ∈ ℕ) → (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (𝑘𝑐-(ℜ‘𝑆)))
5018, 25, 493eqtrd 2778 . . 3 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) = (𝑘𝑐-(ℜ‘𝑆)))
517, 50eqtr4d 2777 . 2 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (abs‘(𝐹𝑘)))
5210, 15cxpcld 26764 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-𝑆) ∈ ℂ)
538, 52eqeltrd 2838 . 2 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
54 2rp 13036 . . . . . . 7 2 ∈ ℝ+
55 1re 11258 . . . . . . . 8 1 ∈ ℝ
56 resubcl 11570 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ) → (1 − (ℜ‘𝑆)) ∈ ℝ)
5755, 39, 56sylancr 587 . . . . . . 7 (𝜑 → (1 − (ℜ‘𝑆)) ∈ ℝ)
58 rpcxpcl 26732 . . . . . . 7 ((2 ∈ ℝ+ ∧ (1 − (ℜ‘𝑆)) ∈ ℝ) → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ+)
5954, 57, 58sylancr 587 . . . . . 6 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ+)
6059rpcnd 13076 . . . . 5 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ)
61 zetacvg.2 . . . . . . . . 9 (𝜑 → 1 < (ℜ‘𝑆))
62 recl 15145 . . . . . . . . . . . 12 (𝑆 ∈ ℂ → (ℜ‘𝑆) ∈ ℝ)
6362recnd 11286 . . . . . . . . . . 11 (𝑆 ∈ ℂ → (ℜ‘𝑆) ∈ ℂ)
6413, 63syl 17 . . . . . . . . . 10 (𝜑 → (ℜ‘𝑆) ∈ ℂ)
6564addlidd 11459 . . . . . . . . 9 (𝜑 → (0 + (ℜ‘𝑆)) = (ℜ‘𝑆))
6661, 65breqtrrd 5175 . . . . . . . 8 (𝜑 → 1 < (0 + (ℜ‘𝑆)))
67 0re 11260 . . . . . . . . . 10 0 ∈ ℝ
68 ltsubadd 11730 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
6955, 67, 68mp3an13 1451 . . . . . . . . 9 ((ℜ‘𝑆) ∈ ℝ → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
7039, 69syl 17 . . . . . . . 8 (𝜑 → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
7166, 70mpbird 257 . . . . . . 7 (𝜑 → (1 − (ℜ‘𝑆)) < 0)
72 2re 12337 . . . . . . . . 9 2 ∈ ℝ
73 1lt2 12434 . . . . . . . . 9 1 < 2
74 cxplt 26750 . . . . . . . . 9 (((2 ∈ ℝ ∧ 1 < 2) ∧ ((1 − (ℜ‘𝑆)) ∈ ℝ ∧ 0 ∈ ℝ)) → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7572, 73, 74mpanl12 702 . . . . . . . 8 (((1 − (ℜ‘𝑆)) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7657, 67, 75sylancl 586 . . . . . . 7 (𝜑 → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7771, 76mpbid 232 . . . . . 6 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0))
7859rprege0d 13081 . . . . . . 7 (𝜑 → ((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤ (2↑𝑐(1 − (ℜ‘𝑆)))))
79 absid 15331 . . . . . . 7 (((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤ (2↑𝑐(1 − (ℜ‘𝑆)))) → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) = (2↑𝑐(1 − (ℜ‘𝑆))))
8078, 79syl 17 . . . . . 6 (𝜑 → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) = (2↑𝑐(1 − (ℜ‘𝑆))))
81 2cn 12338 . . . . . . . . 9 2 ∈ ℂ
82 cxp0 26726 . . . . . . . . 9 (2 ∈ ℂ → (2↑𝑐0) = 1)
8381, 82ax-mp 5 . . . . . . . 8 (2↑𝑐0) = 1
8483eqcomi 2743 . . . . . . 7 1 = (2↑𝑐0)
8584a1i 11 . . . . . 6 (𝜑 → 1 = (2↑𝑐0))
8677, 80, 853brtr4d 5179 . . . . 5 (𝜑 → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) < 1)
87 oveq2 7438 . . . . . . 7 (𝑛 = 𝑚 → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
88 eqid 2734 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))
89 ovex 7463 . . . . . . 7 ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) ∈ V
9087, 88, 89fvmpt 7015 . . . . . 6 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
9190adantl 481 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
9260, 86, 91geolim 15902 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))))
93 seqex 14040 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ V
94 ovex 7463 . . . . 5 (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))) ∈ V
9593, 94breldm 5921 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ )
9692, 95syl 17 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ )
97 rpcxpcl 26732 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ -(ℜ‘𝑆) ∈ ℝ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ+)
9819, 40, 97syl2anr 597 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ+)
9998rpred 13074 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ)
1007, 99eqeltrd 2838 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) ∈ ℝ)
10198rpge0d 13078 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝑘𝑐-(ℜ‘𝑆)))
102101, 7breqtrrd 5175 . . . 4 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘))
103 nnre 12270 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
104103lep1d 12196 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1))
10519reeflogd 26680 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (exp‘(log‘𝑘)) = 𝑘)
106 peano2nn 12275 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
107106nnrpd 13072 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℝ+)
108107reeflogd 26680 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (exp‘(log‘(𝑘 + 1))) = (𝑘 + 1))
109104, 105, 1083brtr4d 5179 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1))))
110107relogcld 26679 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (log‘(𝑘 + 1)) ∈ ℝ)
111 efle 16150 . . . . . . . . . . . 12 (((log‘𝑘) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1)))))
11220, 110, 111syl2anc 584 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1)))))
113109, 112mpbird 257 . . . . . . . . . 10 (𝑘 ∈ ℕ → (log‘𝑘) ≤ (log‘(𝑘 + 1)))
114113adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ≤ (log‘(𝑘 + 1)))
11520adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℝ)
116106adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
117116nnrpd 13072 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ+)
118117relogcld 26679 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (log‘(𝑘 + 1)) ∈ ℝ)
11939adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (ℜ‘𝑆) ∈ ℝ)
12067a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
12155a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
122 0lt1 11782 . . . . . . . . . . . . 13 0 < 1
123122a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
124120, 121, 39, 123, 61lttrd 11419 . . . . . . . . . . 11 (𝜑 → 0 < (ℜ‘𝑆))
125124adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < (ℜ‘𝑆))
126 lemul2 12117 . . . . . . . . . 10 (((log‘𝑘) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ ∧ ((ℜ‘𝑆) ∈ ℝ ∧ 0 < (ℜ‘𝑆))) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1)))))
127115, 118, 119, 125, 126syl112anc 1373 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1)))))
128114, 127mpbid 232 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))))
129 remulcl 11237 . . . . . . . . . 10 (((ℜ‘𝑆) ∈ ℝ ∧ (log‘𝑘) ∈ ℝ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
13039, 20, 129syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
131 remulcl 11237 . . . . . . . . . 10 (((ℜ‘𝑆) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
13239, 110, 131syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
133130, 132lenegd 11839 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ↔ -((ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ -((ℜ‘𝑆) · (log‘𝑘))))
134128, 133mpbid 232 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → -((ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ -((ℜ‘𝑆) · (log‘𝑘)))
135110recnd 11286 . . . . . . . 8 (𝑘 ∈ ℕ → (log‘(𝑘 + 1)) ∈ ℂ)
136 mulneg1 11696 . . . . . . . 8 (((ℜ‘𝑆) ∈ ℂ ∧ (log‘(𝑘 + 1)) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) = -((ℜ‘𝑆) · (log‘(𝑘 + 1))))
13764, 135, 136syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) = -((ℜ‘𝑆) · (log‘(𝑘 + 1))))
138 mulneg1 11696 . . . . . . . 8 (((ℜ‘𝑆) ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘𝑘)) = -((ℜ‘𝑆) · (log‘𝑘)))
13964, 21, 138syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) = -((ℜ‘𝑆) · (log‘𝑘)))
140134, 137, 1393brtr4d 5179 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)))
141 remulcl 11237 . . . . . . . 8 ((-(ℜ‘𝑆) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
14240, 110, 141syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
143 remulcl 11237 . . . . . . . 8 ((-(ℜ‘𝑆) ∈ ℝ ∧ (log‘𝑘) ∈ ℝ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
14440, 20, 143syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
145 efle 16150 . . . . . . 7 (((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ ∧ (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ) → ((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))))
146142, 144, 145syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))))
147140, 146mpbid 232 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
148 oveq1 7437 . . . . . . . 8 (𝑛 = (𝑘 + 1) → (𝑛𝑐-(ℜ‘𝑆)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
149 ovex 7463 . . . . . . . 8 ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)) ∈ V
150148, 4, 149fvmpt 7015 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
151116, 150syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
152116nncnd 12279 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
153116nnne0d 12313 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ≠ 0)
154152, 153, 47cxpefd 26768 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))))
155151, 154eqtrd 2774 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))))
1567, 48eqtrd 2774 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
157147, 155, 1563brtr4d 5179 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) ≤ ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘))
15857recnd 11286 . . . . . . . . . . 11 (𝜑 → (1 − (ℜ‘𝑆)) ∈ ℂ)
159158adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) ∈ ℂ)
160 nn0re 12532 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
161160adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
162161recnd 11286 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
163159, 162mulcomd 11279 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((1 − (ℜ‘𝑆)) · 𝑚) = (𝑚 · (1 − (ℜ‘𝑆))))
164163oveq2d 7446 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = (2↑𝑐(𝑚 · (1 − (ℜ‘𝑆)))))
16554a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 2 ∈ ℝ+)
166165, 161, 159cxpmuld 26793 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐(𝑚 · (1 − (ℜ‘𝑆)))) = ((2↑𝑐𝑚)↑𝑐(1 − (ℜ‘𝑆))))
167 simpr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
168 cxpexp 26724 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (2↑𝑐𝑚) = (2↑𝑚))
16981, 167, 168sylancr 587 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐𝑚) = (2↑𝑚))
170 ax-1cn 11210 . . . . . . . . . . 11 1 ∈ ℂ
17164adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (ℜ‘𝑆) ∈ ℂ)
172 negsub 11554 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (ℜ‘𝑆) ∈ ℂ) → (1 + -(ℜ‘𝑆)) = (1 − (ℜ‘𝑆)))
173170, 171, 172sylancr 587 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 + -(ℜ‘𝑆)) = (1 − (ℜ‘𝑆)))
174173eqcomd 2740 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) = (1 + -(ℜ‘𝑆)))
175169, 174oveq12d 7448 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐𝑚)↑𝑐(1 − (ℜ‘𝑆))) = ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))))
176164, 166, 1753eqtrd 2778 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))))
17757adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) ∈ ℝ)
178165, 177, 162cxpmuld 26793 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚))
179 2nn 12336 . . . . . . . . . . 11 2 ∈ ℕ
180 nnexpcl 14111 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
181179, 180mpan 690 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℕ)
182181adantl 481 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
183182nncnd 12279 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℂ)
184182nnne0d 12313 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ≠ 0)
185 1cnd 11253 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
18641adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → -(ℜ‘𝑆) ∈ ℂ)
187183, 184, 185, 186cxpaddd 26773 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))) = (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
188176, 178, 1873eqtr3d 2782 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
189 cxpexp 26724 . . . . . . 7 (((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
19060, 189sylan 580 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
191183cxp1d 26762 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚)↑𝑐1) = (2↑𝑚))
192191oveq1d 7445 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
193188, 190, 1923eqtr3d 2782 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
194179, 167, 180sylancr 587 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
195 oveq1 7437 . . . . . . . 8 (𝑛 = (2↑𝑚) → (𝑛𝑐-(ℜ‘𝑆)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
196 ovex 7463 . . . . . . . 8 ((2↑𝑚)↑𝑐-(ℜ‘𝑆)) ∈ V
197195, 4, 196fvmpt 7015 . . . . . . 7 ((2↑𝑚) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
198194, 197syl 17 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
199198oveq2d 7446 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚) · ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
200193, 91, 1993eqtr4d 2784 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑚) · ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚))))
201100, 102, 157, 200climcnds 15883 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))) ∈ dom ⇝ ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ ))
20296, 201mpbird 257 . 2 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))) ∈ dom ⇝ )
2031, 2, 51, 53, 202abscvgcvg 15851 1 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cmpt 5230  dom cdm 5688  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  +crp 13031  seqcseq 14038  cexp 14098  cre 15132  cim 15133  abscabs 15269  cli 15516  expce 16093  logclog 26610  𝑐ccxp 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-cxp 26613
This theorem is referenced by:  lgamgulmlem4  27089
  Copyright terms: Public domain W3C validator