MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmval Structured version   Visualization version   GIF version

Theorem zlmval 20629
Description: Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
zlmval.w 𝑊 = (ℤMod‘𝐺)
zlmval.m · = (.g𝐺)
Assertion
Ref Expression
zlmval (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))

Proof of Theorem zlmval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 zlmval.w . 2 𝑊 = (ℤMod‘𝐺)
2 elex 3440 . . 3 (𝐺𝑉𝐺 ∈ V)
3 oveq1 7262 . . . . 5 (𝑔 = 𝐺 → (𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) = (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
4 fveq2 6756 . . . . . . 7 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
5 zlmval.m . . . . . . 7 · = (.g𝐺)
64, 5eqtr4di 2797 . . . . . 6 (𝑔 = 𝐺 → (.g𝑔) = · )
76opeq2d 4808 . . . . 5 (𝑔 = 𝐺 → ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
83, 7oveq12d 7273 . . . 4 (𝑔 = 𝐺 → ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
9 df-zlm 20618 . . . 4 ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩))
10 ovex 7288 . . . 4 ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩) ∈ V
118, 9, 10fvmpt 6857 . . 3 (𝐺 ∈ V → (ℤMod‘𝐺) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
122, 11syl 17 . 2 (𝐺𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
131, 12eqtrid 2790 1 (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cfv 6418  (class class class)co 7255   sSet csts 16792  ndxcnx 16822  Scalarcsca 16891   ·𝑠 cvsca 16892  .gcmg 18615  ringzring 20582  ℤModczlm 20614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-zlm 20618
This theorem is referenced by:  zlmlem  20630  zlmlemOLD  20631  zlmsca  20638  zlmvsca  20639  zlmds  31814  zlmtset  31815
  Copyright terms: Public domain W3C validator