Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zlmval | Structured version Visualization version GIF version |
Description: Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
zlmval.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmval.m | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
zlmval | ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmval.w | . 2 ⊢ 𝑊 = (ℤMod‘𝐺) | |
2 | elex 3440 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
3 | oveq1 7262 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 sSet 〈(Scalar‘ndx), ℤring〉) = (𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) | |
4 | fveq2 6756 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) | |
5 | zlmval.m | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
6 | 4, 5 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
7 | 6 | opeq2d 4808 | . . . . 5 ⊢ (𝑔 = 𝐺 → 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉 = 〈( ·𝑠 ‘ndx), · 〉) |
8 | 3, 7 | oveq12d 7273 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
9 | df-zlm 20618 | . . . 4 ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉)) | |
10 | ovex 7288 | . . . 4 ⊢ ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉) ∈ V | |
11 | 8, 9, 10 | fvmpt 6857 | . . 3 ⊢ (𝐺 ∈ V → (ℤMod‘𝐺) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
12 | 2, 11 | syl 17 | . 2 ⊢ (𝐺 ∈ 𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
13 | 1, 12 | eqtrid 2790 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 ndxcnx 16822 Scalarcsca 16891 ·𝑠 cvsca 16892 .gcmg 18615 ℤringzring 20582 ℤModczlm 20614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-zlm 20618 |
This theorem is referenced by: zlmlem 20630 zlmlemOLD 20631 zlmsca 20638 zlmvsca 20639 zlmds 31814 zlmtset 31815 |
Copyright terms: Public domain | W3C validator |