MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmval Structured version   Visualization version   GIF version

Theorem zlmval 21476
Description: Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
zlmval.w 𝑊 = (ℤMod‘𝐺)
zlmval.m · = (.g𝐺)
Assertion
Ref Expression
zlmval (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))

Proof of Theorem zlmval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 zlmval.w . 2 𝑊 = (ℤMod‘𝐺)
2 elex 3480 . . 3 (𝐺𝑉𝐺 ∈ V)
3 oveq1 7412 . . . . 5 (𝑔 = 𝐺 → (𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) = (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
4 fveq2 6876 . . . . . . 7 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
5 zlmval.m . . . . . . 7 · = (.g𝐺)
64, 5eqtr4di 2788 . . . . . 6 (𝑔 = 𝐺 → (.g𝑔) = · )
76opeq2d 4856 . . . . 5 (𝑔 = 𝐺 → ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
83, 7oveq12d 7423 . . . 4 (𝑔 = 𝐺 → ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
9 df-zlm 21465 . . . 4 ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩))
10 ovex 7438 . . . 4 ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩) ∈ V
118, 9, 10fvmpt 6986 . . 3 (𝐺 ∈ V → (ℤMod‘𝐺) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
122, 11syl 17 . 2 (𝐺𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
131, 12eqtrid 2782 1 (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607  cfv 6531  (class class class)co 7405   sSet csts 17182  ndxcnx 17212  Scalarcsca 17274   ·𝑠 cvsca 17275  .gcmg 19050  ringczring 21407  ℤModczlm 21461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-zlm 21465
This theorem is referenced by:  zlmlem  21477  zlmsca  21481  zlmvsca  21482  zlmds  33993  zlmtset  33994
  Copyright terms: Public domain W3C validator