![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmval | Structured version Visualization version GIF version |
Description: Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
zlmval.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmval.m | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
zlmval | ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmval.w | . 2 ⊢ 𝑊 = (ℤMod‘𝐺) | |
2 | elex 3509 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
3 | oveq1 7455 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 sSet 〈(Scalar‘ndx), ℤring〉) = (𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) | |
4 | fveq2 6920 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) | |
5 | zlmval.m | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
6 | 4, 5 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
7 | 6 | opeq2d 4904 | . . . . 5 ⊢ (𝑔 = 𝐺 → 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉 = 〈( ·𝑠 ‘ndx), · 〉) |
8 | 3, 7 | oveq12d 7466 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
9 | df-zlm 21538 | . . . 4 ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉)) | |
10 | ovex 7481 | . . . 4 ⊢ ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉) ∈ V | |
11 | 8, 9, 10 | fvmpt 7029 | . . 3 ⊢ (𝐺 ∈ V → (ℤMod‘𝐺) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
12 | 2, 11 | syl 17 | . 2 ⊢ (𝐺 ∈ 𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
13 | 1, 12 | eqtrid 2792 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 ndxcnx 17240 Scalarcsca 17314 ·𝑠 cvsca 17315 .gcmg 19107 ℤringczring 21480 ℤModczlm 21534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-zlm 21538 |
This theorem is referenced by: zlmlem 21550 zlmlemOLD 21551 zlmsca 21558 zlmvsca 21559 zlmds 33908 zlmdsOLD 33909 zlmtset 33910 zlmtsetOLD 33911 |
Copyright terms: Public domain | W3C validator |