![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmval | Structured version Visualization version GIF version |
Description: Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
zlmval.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmval.m | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
zlmval | ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmval.w | . 2 ⊢ 𝑊 = (ℤMod‘𝐺) | |
2 | elex 3485 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
3 | oveq1 7408 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 sSet 〈(Scalar‘ndx), ℤring〉) = (𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) | |
4 | fveq2 6881 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) | |
5 | zlmval.m | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
6 | 4, 5 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
7 | 6 | opeq2d 4872 | . . . . 5 ⊢ (𝑔 = 𝐺 → 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉 = 〈( ·𝑠 ‘ndx), · 〉) |
8 | 3, 7 | oveq12d 7419 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
9 | df-zlm 21359 | . . . 4 ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉)) | |
10 | ovex 7434 | . . . 4 ⊢ ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉) ∈ V | |
11 | 8, 9, 10 | fvmpt 6988 | . . 3 ⊢ (𝐺 ∈ V → (ℤMod‘𝐺) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
12 | 2, 11 | syl 17 | . 2 ⊢ (𝐺 ∈ 𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
13 | 1, 12 | eqtrid 2776 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3466 〈cop 4626 ‘cfv 6533 (class class class)co 7401 sSet csts 17095 ndxcnx 17125 Scalarcsca 17199 ·𝑠 cvsca 17200 .gcmg 18985 ℤringczring 21301 ℤModczlm 21355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-zlm 21359 |
This theorem is referenced by: zlmlem 21371 zlmlemOLD 21372 zlmsca 21379 zlmvsca 21380 zlmds 33431 zlmdsOLD 33432 zlmtset 33433 zlmtsetOLD 33434 |
Copyright terms: Public domain | W3C validator |