Step | Hyp | Ref
| Expression |
1 | | znval.y |
. 2
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
2 | | zringring 20673 |
. . . . 5
⊢
ℤring ∈ Ring |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝑛 = 𝑁 → ℤring ∈
Ring) |
4 | | ovexd 7310 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) ∈ V) |
5 | | id 22 |
. . . . . . 7
⊢ (𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) → 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) |
6 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → 𝑧 =
ℤring) |
7 | 6 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
(RSpan‘𝑧) =
(RSpan‘ℤring)) |
8 | | znval.s |
. . . . . . . . . . . 12
⊢ 𝑆 =
(RSpan‘ℤring) |
9 | 7, 8 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
(RSpan‘𝑧) = 𝑆) |
10 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → 𝑛 = 𝑁) |
11 | 10 | sneqd 4573 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → {𝑛} = {𝑁}) |
12 | 9, 11 | fveq12d 6781 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
((RSpan‘𝑧)‘{𝑛}) = (𝑆‘{𝑁})) |
13 | 6, 12 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛})) = (ℤring
~QG (𝑆‘{𝑁}))) |
14 | 6, 13 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) = (ℤring
/s (ℤring ~QG (𝑆‘{𝑁})))) |
15 | | znval.u |
. . . . . . . 8
⊢ 𝑈 = (ℤring
/s (ℤring ~QG (𝑆‘{𝑁}))) |
16 | 14, 15 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) = 𝑈) |
17 | 5, 16 | sylan9eqr 2800 |
. . . . . 6
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑠 = 𝑈) |
18 | | fvex 6787 |
. . . . . . . . . 10
⊢
(ℤRHom‘𝑠) ∈ V |
19 | 18 | resex 5939 |
. . . . . . . . 9
⊢
((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V |
20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V) |
21 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) → 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) |
22 | 17 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (ℤRHom‘𝑠) = (ℤRHom‘𝑈)) |
23 | | simpll 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑛 = 𝑁) |
24 | 23 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑛 = 0 ↔ 𝑁 = 0)) |
25 | 23 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (0..^𝑛) = (0..^𝑁)) |
26 | 24, 25 | ifbieq2d 4485 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = if(𝑁 = 0, ℤ, (0..^𝑁))) |
27 | | znval.w |
. . . . . . . . . . . . . . 15
⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
28 | 26, 27 | eqtr4di 2796 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = 𝑊) |
29 | 22, 28 | reseq12d 5892 |
. . . . . . . . . . . . 13
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = ((ℤRHom‘𝑈) ↾ 𝑊)) |
30 | | znval.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
31 | 29, 30 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = 𝐹) |
32 | 21, 31 | sylan9eqr 2800 |
. . . . . . . . . . 11
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹) |
33 | 32 | coeq1d 5770 |
. . . . . . . . . 10
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → (𝑓 ∘ ≤ ) = (𝐹 ∘ ≤ )) |
34 | 32 | cnveqd 5784 |
. . . . . . . . . 10
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ◡𝑓 = ◡𝐹) |
35 | 33, 34 | coeq12d 5773 |
. . . . . . . . 9
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ ◡𝑓) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
36 | | znval.l |
. . . . . . . . 9
⊢ ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) |
37 | 35, 36 | eqtr4di 2796 |
. . . . . . . 8
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ ◡𝑓) = ≤ ) |
38 | 20, 37 | csbied 3870 |
. . . . . . 7
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) →
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓) = ≤ ) |
39 | 38 | opeq2d 4811 |
. . . . . 6
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉 = 〈(le‘ndx), ≤
〉) |
40 | 17, 39 | oveq12d 7293 |
. . . . 5
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
41 | 4, 40 | csbied 3870 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
⦋(𝑧
/s (𝑧
~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
42 | 3, 41 | csbied 3870 |
. . 3
⊢ (𝑛 = 𝑁 →
⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
43 | | df-zn 20708 |
. . 3
⊢
ℤ/nℤ = (𝑛 ∈ ℕ0 ↦
⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) |
44 | | ovex 7308 |
. . 3
⊢ (𝑈 sSet 〈(le‘ndx),
≤
〉) ∈ V |
45 | 42, 43, 44 | fvmpt 6875 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (ℤ/nℤ‘𝑁) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
46 | 1, 45 | eqtrid 2790 |
1
⊢ (𝑁 ∈ ℕ0
→ 𝑌 = (𝑈 sSet 〈(le‘ndx),
≤
〉)) |