| Step | Hyp | Ref
| Expression |
| 1 | | znval.y |
. 2
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
| 2 | | zringring 21460 |
. . . . 5
⊢
ℤring ∈ Ring |
| 3 | 2 | a1i 11 |
. . . 4
⊢ (𝑛 = 𝑁 → ℤring ∈
Ring) |
| 4 | | ovexd 7466 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) ∈ V) |
| 5 | | id 22 |
. . . . . . 7
⊢ (𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) → 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) |
| 6 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → 𝑧 =
ℤring) |
| 7 | 6 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
(RSpan‘𝑧) =
(RSpan‘ℤring)) |
| 8 | | znval.s |
. . . . . . . . . . . 12
⊢ 𝑆 =
(RSpan‘ℤring) |
| 9 | 7, 8 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
(RSpan‘𝑧) = 𝑆) |
| 10 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → 𝑛 = 𝑁) |
| 11 | 10 | sneqd 4638 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → {𝑛} = {𝑁}) |
| 12 | 9, 11 | fveq12d 6913 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
((RSpan‘𝑧)‘{𝑛}) = (𝑆‘{𝑁})) |
| 13 | 6, 12 | oveq12d 7449 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛})) = (ℤring
~QG (𝑆‘{𝑁}))) |
| 14 | 6, 13 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) = (ℤring
/s (ℤring ~QG (𝑆‘{𝑁})))) |
| 15 | | znval.u |
. . . . . . . 8
⊢ 𝑈 = (ℤring
/s (ℤring ~QG (𝑆‘{𝑁}))) |
| 16 | 14, 15 | eqtr4di 2795 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) = 𝑈) |
| 17 | 5, 16 | sylan9eqr 2799 |
. . . . . 6
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑠 = 𝑈) |
| 18 | | fvex 6919 |
. . . . . . . . . 10
⊢
(ℤRHom‘𝑠) ∈ V |
| 19 | 18 | resex 6047 |
. . . . . . . . 9
⊢
((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V |
| 20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V) |
| 21 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) → 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) |
| 22 | 17 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (ℤRHom‘𝑠) = (ℤRHom‘𝑈)) |
| 23 | | simpll 767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑛 = 𝑁) |
| 24 | 23 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑛 = 0 ↔ 𝑁 = 0)) |
| 25 | 23 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (0..^𝑛) = (0..^𝑁)) |
| 26 | 24, 25 | ifbieq2d 4552 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = if(𝑁 = 0, ℤ, (0..^𝑁))) |
| 27 | | znval.w |
. . . . . . . . . . . . . . 15
⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| 28 | 26, 27 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = 𝑊) |
| 29 | 22, 28 | reseq12d 5998 |
. . . . . . . . . . . . 13
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = ((ℤRHom‘𝑈) ↾ 𝑊)) |
| 30 | | znval.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
| 31 | 29, 30 | eqtr4di 2795 |
. . . . . . . . . . . 12
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = 𝐹) |
| 32 | 21, 31 | sylan9eqr 2799 |
. . . . . . . . . . 11
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹) |
| 33 | 32 | coeq1d 5872 |
. . . . . . . . . 10
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → (𝑓 ∘ ≤ ) = (𝐹 ∘ ≤ )) |
| 34 | 32 | cnveqd 5886 |
. . . . . . . . . 10
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ◡𝑓 = ◡𝐹) |
| 35 | 33, 34 | coeq12d 5875 |
. . . . . . . . 9
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ ◡𝑓) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| 36 | | znval.l |
. . . . . . . . 9
⊢ ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) |
| 37 | 35, 36 | eqtr4di 2795 |
. . . . . . . 8
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ ◡𝑓) = ≤ ) |
| 38 | 20, 37 | csbied 3935 |
. . . . . . 7
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) →
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓) = ≤ ) |
| 39 | 38 | opeq2d 4880 |
. . . . . 6
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉 = 〈(le‘ndx), ≤
〉) |
| 40 | 17, 39 | oveq12d 7449 |
. . . . 5
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
| 41 | 4, 40 | csbied 3935 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
⦋(𝑧
/s (𝑧
~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
| 42 | 3, 41 | csbied 3935 |
. . 3
⊢ (𝑛 = 𝑁 →
⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
| 43 | | df-zn 21517 |
. . 3
⊢
ℤ/nℤ = (𝑛 ∈ ℕ0 ↦
⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) |
| 44 | | ovex 7464 |
. . 3
⊢ (𝑈 sSet 〈(le‘ndx),
≤
〉) ∈ V |
| 45 | 42, 43, 44 | fvmpt 7016 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (ℤ/nℤ‘𝑁) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
| 46 | 1, 45 | eqtrid 2789 |
1
⊢ (𝑁 ∈ ℕ0
→ 𝑌 = (𝑈 sSet 〈(le‘ndx),
≤
〉)) |