MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfbi Structured version   Visualization version   GIF version

Theorem dfbi 475
Description: Definition df-bi 206 rewritten in an abbreviated form to help intuitive understanding of that definition. Note that it is a conjunction of two implications; one which asserts properties that follow from the biconditional and one which asserts properties that imply the biconditional. (Contributed by NM, 15-Aug-2008.)
Assertion
Ref Expression
dfbi (((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))

Proof of Theorem dfbi
StepHypRef Expression
1 dfbi2 474 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
2 dfbi2 474 . 2 (((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑))) ↔ (((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓))))
31, 2mpbi 229 1 (((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator