![]() |
Metamath
Proof Explorer Theorem List (p. 5 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30438) |
![]() (30439-31961) |
![]() (31962-47939) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pm3.24 401 | Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
⊢ ¬ (𝜑 ∧ ¬ 𝜑) | ||
Theorem | annim 402 | Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | ||
Theorem | pm4.61 403 | Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (𝜑 → 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) | ||
Theorem | pm4.65 404 | Theorem *4.65 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | ||
Theorem | imp 405 | Importation inference. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | impcom 406 | Importation inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
Theorem | con3dimp 407 | Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) | ||
Theorem | mpnanrd 408 | Eliminate the right side of a negated conjunction in an implication. (Contributed by ML, 17-Oct-2020.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜒) | ||
Theorem | impd 409 | Importation deduction. (Contributed by NM, 31-Mar-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | ||
Theorem | impcomd 410 | Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) | ||
Theorem | ex 411 | Exportation inference. (This theorem used to be labeled "exp" but was changed to "ex" so as not to conflict with the math token "exp", per the June 2006 Metamath spec change.) A translation of natural deduction rule → I (→ introduction), see natded 29923. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
Theorem | expcom 412 | Exportation inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜓 → (𝜑 → 𝜒)) | ||
Theorem | expdcom 413 | Commuted form of expd 414. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 414. (Revised by Wolf Lammen, 28-Jul-2022.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) | ||
Theorem | expd 414 | Exportation deduction. (Contributed by NM, 20-Aug-1993.) (Proof shortened by Wolf Lammen, 28-Jul-2022.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | ||
Theorem | expcomd 415 | Deduction form of expcom 412. (Contributed by Alan Sare, 22-Jul-2012.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) | ||
Theorem | imp31 416 | An importation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | imp32 417 | An importation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | ||
Theorem | exp31 418 | An exportation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | ||
Theorem | exp32 419 | An exportation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | ||
Theorem | imp4b 420 | An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 421. (Revised by Wolf Lammen, 19-Jul-2021.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | ||
Theorem | imp4a 421 | An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | ||
Theorem | imp4c 422 | An importation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) | ||
Theorem | imp4d 423 | An importation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (𝜑 → ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏)) | ||
Theorem | imp41 424 | An importation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | imp42 425 | An importation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) | ||
Theorem | imp43 426 | An importation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | ||
Theorem | imp44 427 | An importation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) | ||
Theorem | imp45 428 | An importation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜏) | ||
Theorem | exp4b 429 | An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 430. (Revised by Wolf Lammen, 20-Jul-2021.) |
⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp4a 430 | An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp4c 431 | An exportation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp4d 432 | An exportation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (𝜑 → ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp41 433 | An exportation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp42 434 | An exportation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp43 435 | An exportation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp44 436 | An exportation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp45 437 | An exportation inference. (Contributed by NM, 26-Apr-1994.) |
⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | imp5d 438 | An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂)) | ||
Theorem | imp5a 439 | An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) (Proof shortened by Wolf Lammen, 2-Aug-2022.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → ((𝜃 ∧ 𝜏) → 𝜂)))) | ||
Theorem | imp5g 440 | An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (((𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂)) | ||
Theorem | imp55 441 | An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) ⇒ ⊢ (((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ∧ 𝜏) → 𝜂) | ||
Theorem | imp511 442 | An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) ⇒ ⊢ ((𝜑 ∧ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ∧ 𝜏)) → 𝜂) | ||
Theorem | exp5c 443 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp5j 444 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (𝜑 → ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp5l 445 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (𝜑 → (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp53 446 | An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | pm3.3 447 | Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | ||
Theorem | pm3.31 448 | Theorem *3.31 (Imp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | ||
Theorem | impexp 449 | Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) | ||
Theorem | impancom 450 | Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) | ||
Theorem | expdimp 451 | A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | ||
Theorem | expimpd 452 | Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | ||
Theorem | impr 453 | Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | ||
Theorem | impl 454 | Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | expr 455 | Export a wff from a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | ||
Theorem | expl 456 | Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | ||
Theorem | ancoms 457 | Inference commuting conjunction in antecedent. (Contributed by NM, 21-Apr-1994.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
Theorem | pm3.22 458 | Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∧ 𝜑)) | ||
Theorem | ancom 459 | Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | ||
Theorem | ancomd 460 | Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
⊢ (𝜑 → (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ∧ 𝜓)) | ||
Theorem | biancomi 461 | Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.) |
⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) ⇒ ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | ||
Theorem | biancomd 462 | Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | ||
Theorem | ancomst 463 | Closed form of ancoms 457. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) | ||
Theorem | ancomsd 464 | Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) | ||
Theorem | anasss 465 | Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | ||
Theorem | anassrs 466 | Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | anass 467 | Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | ||
Theorem | pm3.2 468 | Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 469 and its associated deduction is jca 510 (and the double deduction is jcad 511). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | ||
Theorem | pm3.2i 469 | Infer conjunction of premises. Inference associated with pm3.2 468. Its associated deduction is jca 510 (and the double deduction is jcad 511). (Contributed by NM, 21-Jun-1993.) |
⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ∧ 𝜓) | ||
Theorem | pm3.21 470 | Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | ||
Theorem | pm3.43i 471 | Nested conjunction of antecedents. (Contributed by NM, 4-Jan-1993.) |
⊢ ((𝜑 → 𝜓) → ((𝜑 → 𝜒) → (𝜑 → (𝜓 ∧ 𝜒)))) | ||
Theorem | pm3.43 472 | Theorem *3.43 (Comp) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) | ||
Theorem | dfbi2 473 | A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | ||
Theorem | dfbi 474 | Definition df-bi 206 rewritten in an abbreviated form to help intuitive understanding of that definition. Note that it is a conjunction of two implications; one which asserts properties that follow from the biconditional and one which asserts properties that imply the biconditional. (Contributed by NM, 15-Aug-2008.) |
⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | ||
Theorem | biimpa 475 | Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | biimpar 476 | Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | ||
Theorem | biimpac 477 | Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
Theorem | biimparc 478 | Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜒 ∧ 𝜑) → 𝜓) | ||
Theorem | adantr 479 | Inference adding a conjunct to the right of an antecedent. (Contributed by NM, 30-Aug-1993.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | ||
Theorem | adantl 480 | Inference adding a conjunct to the left of an antecedent. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜑) → 𝜓) | ||
Theorem | simpl 481 | Elimination of a conjunct. Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 14-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜑) | ||
Theorem | simpli 482 | Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ 𝜑 | ||
Theorem | simpr 483 | Elimination of a conjunct. Theorem *3.27 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 14-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜓) | ||
Theorem | simpri 484 | Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ 𝜓 | ||
Theorem | intnan 485 | Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜓 ∧ 𝜑) | ||
Theorem | intnanr 486 | Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜑 ∧ 𝜓) | ||
Theorem | intnand 487 | Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) | ||
Theorem | intnanrd 488 | Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) | ||
Theorem | adantld 489 | Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) | ||
Theorem | adantrd 490 | Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) | ||
Theorem | pm3.41 491 | Theorem *3.41 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 → 𝜒) → ((𝜑 ∧ 𝜓) → 𝜒)) | ||
Theorem | pm3.42 492 | Theorem *3.42 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜓 → 𝜒) → ((𝜑 ∧ 𝜓) → 𝜒)) | ||
Theorem | simpld 493 | Deduction eliminating a conjunct. A translation of natural deduction rule ∧ EL (∧ elimination left), see natded 29923. (Contributed by NM, 26-May-1993.) |
⊢ (𝜑 → (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | simprd 494 | Deduction eliminating a conjunct. (Contributed by NM, 14-May-1993.) A translation of natural deduction rule ∧ ER (∧ elimination right), see natded 29923. (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
⊢ (𝜑 → (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | simprbi 495 | Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | simplbi 496 | Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | simprbda 497 | Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | simplbda 498 | Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | simplbi2 499 | Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 → (𝜒 → 𝜑)) | ||
Theorem | simplbi2comt 500 | Closed form of simplbi2com 501. (Contributed by Alan Sare, 22-Jul-2012.) |
⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |