Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version |
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 212 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | df-an 397 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: dfbi 476 pm4.71 558 impimprbi 826 pm5.17 1009 xor 1012 dfbi3 1047 ifpdfbi 1068 albiim 1891 nfbid 1904 sbbi 2304 ralbiim 3113 reu8 3678 sseq2 3957 soeq2 5543 fun11 6545 dffo3 7018 isnsg2 18860 isarchi 31571 axextprim 33781 biimpexp 33797 axextndbi 33911 bj-nnfbit 35008 bj-nnfbid 35009 andiff 40383 ifpidg 41332 ifp1bi 41343 ifpbibib 41351 rp-fakeanorass 41354 frege54cor0a 41705 dffo3f 42958 aibandbiaiffaiffb 44654 aibandbiaiaiffb 44655 afv2orxorb 44985 |
Copyright terms: Public domain | W3C validator |