![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version |
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | df-an 396 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: dfbi 475 pm4.71 557 impimprbi 829 pm5.17 1013 xor 1016 dfbi3 1049 ifpdfbi 1070 albiim 1887 nfbid 1900 sbbi 2307 ralbiim 3111 reu8 3742 dfss2 3981 sseq2 4022 soeq2 5619 fun11 6642 dffo3 7122 dffo3f 7126 isnsg2 19187 isarchi 33172 axextprim 35681 biimpexp 35697 axextndbi 35786 bj-nnfbit 36735 bj-nnfbid 36736 ifpidg 43481 ifp1bi 43492 ifpbibib 43500 rp-fakeanorass 43503 frege54cor0a 43853 aibandbiaiffaiffb 46844 aibandbiaiaiffb 46845 afv2orxorb 47178 |
Copyright terms: Public domain | W3C validator |