| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
| Ref | Expression |
|---|---|
| dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | df-an 396 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfbi 475 pm4.71 557 impimprbi 828 pm5.17 1013 xor 1016 dfbi3 1049 ifpdfbi 1070 albiim 1889 nfbid 1902 sbbi 2307 ralbiim 3093 reu8 3701 dfss2 3929 soeq2 5561 fun11 6574 dffo3 7056 dffo3f 7060 isnsg2 19070 isarchi 33151 axextprim 35681 biimpexp 35697 axextndbi 35785 bj-nnfbit 36733 bj-nnfbid 36734 ifpidg 43473 ifp1bi 43484 ifpbibib 43492 rp-fakeanorass 43495 frege54cor0a 43845 aibandbiaiffaiffb 46888 aibandbiaiaiffb 46889 afv2orxorb 47222 |
| Copyright terms: Public domain | W3C validator |