Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version |
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 212 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | df-an 396 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: dfbi 475 pm4.71 557 impimprbi 825 pm5.17 1008 xor 1011 dfbi3 1046 ifpdfbi 1067 norassOLD 1536 albiim 1893 nfbid 1906 sbbi 2308 ralbiim 3098 reu8 3663 sseq2 3943 soeq2 5516 fun11 6492 dffo3 6960 isnsg2 18699 isarchi 31338 axextprim 33542 biimpexp 33561 axextndbi 33686 bj-nnfbit 34861 bj-nnfbid 34862 andiff 40087 ifpidg 40996 ifp1bi 41007 ifpbibib 41015 rp-fakeanorass 41018 frege54cor0a 41360 dffo3f 42606 aibandbiaiffaiffb 44276 aibandbiaiaiffb 44277 afv2orxorb 44607 |
Copyright terms: Public domain | W3C validator |