| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
| Ref | Expression |
|---|---|
| dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | df-an 396 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfbi 475 pm4.71 557 impimprbi 828 pm5.17 1013 xor 1016 dfbi3 1049 ifpdfbi 1070 albiim 1889 nfbid 1902 sbbi 2308 ralbiim 3100 reu8 3716 dfss2 3944 soeq2 5583 fun11 6610 dffo3 7092 dffo3f 7096 isnsg2 19139 isarchi 33180 axextprim 35718 biimpexp 35734 axextndbi 35822 bj-nnfbit 36770 bj-nnfbid 36771 ifpidg 43515 ifp1bi 43526 ifpbibib 43534 rp-fakeanorass 43537 frege54cor0a 43887 aibandbiaiffaiffb 46923 aibandbiaiaiffb 46924 afv2orxorb 47257 |
| Copyright terms: Public domain | W3C validator |