| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
| Ref | Expression |
|---|---|
| dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | df-an 396 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfbi 475 pm4.71 557 impimprbi 828 pm5.17 1013 xor 1016 dfbi3 1049 ifpdfbi 1070 albiim 1890 nfbid 1903 sbbi 2309 ralbiim 3094 reu8 3687 dfss2 3915 soeq2 5544 fun11 6555 dffo3 7035 dffo3f 7039 isnsg2 19068 isarchi 33151 axextprim 35745 biimpexp 35761 axextndbi 35846 bj-nnfbit 36796 bj-nnfbid 36797 ifpidg 43594 ifp1bi 43605 ifpbibib 43613 rp-fakeanorass 43616 frege54cor0a 43966 aibandbiaiffaiffb 47004 aibandbiaiaiffb 47005 afv2orxorb 47338 |
| Copyright terms: Public domain | W3C validator |