MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfbi2 Structured version   Visualization version   GIF version

Theorem dfbi2 474
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
dfbi2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))

Proof of Theorem dfbi2
StepHypRef Expression
1 dfbi1 213 . 2 ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
2 df-an 396 . 2 (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
31, 2bitr4i 278 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  dfbi  475  pm4.71  557  impimprbi  828  pm5.17  1013  xor  1016  dfbi3  1049  ifpdfbi  1070  albiim  1890  nfbid  1903  sbbi  2309  ralbiim  3094  reu8  3687  dfss2  3915  soeq2  5544  fun11  6555  dffo3  7035  dffo3f  7039  isnsg2  19068  isarchi  33151  axextprim  35745  biimpexp  35761  axextndbi  35846  bj-nnfbit  36796  bj-nnfbid  36797  ifpidg  43594  ifp1bi  43605  ifpbibib  43613  rp-fakeanorass  43616  frege54cor0a  43966  aibandbiaiffaiffb  47004  aibandbiaiaiffb  47005  afv2orxorb  47338
  Copyright terms: Public domain W3C validator