| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
| Ref | Expression |
|---|---|
| dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | df-an 396 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfbi 475 pm4.71 557 impimprbi 828 pm5.17 1013 xor 1016 dfbi3 1049 ifpdfbi 1070 albiim 1889 nfbid 1902 sbbi 2307 ralbiim 3093 reu8 3704 dfss2 3932 soeq2 5568 fun11 6590 dffo3 7074 dffo3f 7078 isnsg2 19088 isarchi 33136 axextprim 35688 biimpexp 35704 axextndbi 35792 bj-nnfbit 36740 bj-nnfbid 36741 ifpidg 43480 ifp1bi 43491 ifpbibib 43499 rp-fakeanorass 43502 frege54cor0a 43852 aibandbiaiffaiffb 46895 aibandbiaiaiffb 46896 afv2orxorb 47229 |
| Copyright terms: Public domain | W3C validator |