![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version |
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | df-an 396 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: dfbi 475 pm4.71 557 impimprbi 828 pm5.17 1012 xor 1015 dfbi3 1050 ifpdfbi 1071 albiim 1888 nfbid 1901 sbbi 2312 ralbiim 3119 reu8 3755 dfss2 3994 sseq2 4035 soeq2 5630 fun11 6652 dffo3 7136 dffo3f 7140 isnsg2 19196 isarchi 33162 axextprim 35663 biimpexp 35679 axextndbi 35768 bj-nnfbit 36718 bj-nnfbid 36719 ifpidg 43453 ifp1bi 43464 ifpbibib 43472 rp-fakeanorass 43475 frege54cor0a 43825 aibandbiaiffaiffb 46809 aibandbiaiaiffb 46810 afv2orxorb 47143 |
Copyright terms: Public domain | W3C validator |