Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version |
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 212 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | df-an 397 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: dfbi 476 pm4.71 558 impimprbi 826 pm5.17 1009 xor 1012 dfbi3 1047 ifpdfbi 1068 norassOLD 1536 albiim 1892 nfbid 1905 sbbi 2305 ralbiim 3099 reu8 3668 sseq2 3947 soeq2 5525 fun11 6508 dffo3 6978 isnsg2 18784 isarchi 31436 axextprim 33642 biimpexp 33659 axextndbi 33780 bj-nnfbit 34934 bj-nnfbid 34935 andiff 40159 ifpidg 41098 ifp1bi 41109 ifpbibib 41117 rp-fakeanorass 41120 frege54cor0a 41471 dffo3f 42717 aibandbiaiffaiffb 44389 aibandbiaiaiffb 44390 afv2orxorb 44720 |
Copyright terms: Public domain | W3C validator |