MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfbi2 Structured version   Visualization version   GIF version

Theorem dfbi2 474
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
dfbi2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))

Proof of Theorem dfbi2
StepHypRef Expression
1 dfbi1 213 . 2 ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
2 df-an 396 . 2 (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
31, 2bitr4i 278 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  dfbi  475  pm4.71  557  impimprbi  828  pm5.17  1013  xor  1016  dfbi3  1049  ifpdfbi  1070  albiim  1889  nfbid  1902  sbbi  2307  ralbiim  3094  reu8  3707  dfss2  3935  soeq2  5571  fun11  6593  dffo3  7077  dffo3f  7081  isnsg2  19095  isarchi  33143  axextprim  35695  biimpexp  35711  axextndbi  35799  bj-nnfbit  36747  bj-nnfbid  36748  ifpidg  43487  ifp1bi  43498  ifpbibib  43506  rp-fakeanorass  43509  frege54cor0a  43859  aibandbiaiffaiffb  46899  aibandbiaiaiffb  46900  afv2orxorb  47233
  Copyright terms: Public domain W3C validator