| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
| Ref | Expression |
|---|---|
| dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 2 | df-an 396 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfbi 475 pm4.71 557 impimprbi 828 pm5.17 1013 xor 1016 dfbi3 1049 ifpdfbi 1070 albiim 1889 nfbid 1902 sbbi 2307 ralbiim 3094 reu8 3707 dfss2 3935 soeq2 5571 fun11 6593 dffo3 7077 dffo3f 7081 isnsg2 19095 isarchi 33143 axextprim 35695 biimpexp 35711 axextndbi 35799 bj-nnfbit 36747 bj-nnfbid 36748 ifpidg 43487 ifp1bi 43498 ifpbibib 43506 rp-fakeanorass 43509 frege54cor0a 43859 aibandbiaiffaiffb 46899 aibandbiaiaiffb 46900 afv2orxorb 47233 |
| Copyright terms: Public domain | W3C validator |