MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftru2 Structured version   Visualization version   GIF version

Theorem dftru2 1544
Description: An alternate definition of "true" (see comment of df-tru 1542). The associated justification theorem is monothetic 265. (Contributed by Anthony Hart, 13-Oct-2010.) (Revised by BJ, 12-Jul-2019.) Use tru 1543 instead. (New usage is discouraged.)
Assertion
Ref Expression
dftru2 (⊤ ↔ (𝜑𝜑))

Proof of Theorem dftru2
StepHypRef Expression
1 tru 1543 . 2
2 id 22 . 2 (𝜑𝜑)
31, 22th 263 1 (⊤ ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wtru 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator