| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 2th.1 | ⊢ 𝜑 |
| 2th.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| 2th | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2th.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2th.1 | . . 3 ⊢ 𝜑 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: monothetic 266 2false 375 dftru2 1545 bitru 1549 vjust 3451 ab0orv 4349 pwv 4871 int0 4929 0iin 5031 dfpo2 6272 orduninsuc 7822 fo1st 7991 fo2nd 7992 1st2val 7999 2nd2val 8000 eqer 8710 ener 8975 ruv 9562 acncc 10400 grothac 10790 grothtsk 10795 hashneq0 14336 rexfiuz 15321 sa-abvi 32379 signswch 34559 satfdm 35363 fobigcup 35895 elhf2 36170 limsucncmpi 36440 bj-vjust 37050 ruvALT 42664 oaordnrex 43291 omnord1ex 43300 oenord1ex 43311 uunT1 44776 nabctnabc 46936 clifte 46940 cliftet 46941 clifteta 46942 cliftetb 46943 confun5 46948 pldofph 46950 icht 47457 lco0 48420 line2ylem 48744 |
| Copyright terms: Public domain | W3C validator |