Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version |
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
2th.1 | ⊢ 𝜑 |
2th.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
2th | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2th.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | 2th.1 | . . 3 ⊢ 𝜑 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
5 | 2, 4 | impbii 208 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: monothetic 265 2false 376 dftru2 1544 bitru 1548 vjust 3433 dfnul3OLD 4262 ab0orv 4312 pwv 4836 int0 4893 0iin 4993 domepOLD 5833 dfpo2 6199 orduninsuc 7690 fo1st 7851 fo2nd 7852 1st2val 7859 2nd2val 7860 eqer 8533 ener 8787 ruv 9361 acncc 10196 grothac 10586 grothtsk 10591 hashneq0 14079 rexfiuz 15059 sa-abvi 30805 signswch 32540 satfdm 33331 fobigcup 34202 elhf2 34477 limsucncmpi 34634 bj-vjust 35226 ruvALT 40168 uunT1 42400 nabctnabc 44426 clifte 44430 cliftet 44431 clifteta 44432 cliftetb 44433 confun5 44438 pldofph 44440 icht 44904 lco0 45768 line2ylem 46097 |
Copyright terms: Public domain | W3C validator |