| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 2th.1 | ⊢ 𝜑 |
| 2th.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| 2th | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2th.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2th.1 | . . 3 ⊢ 𝜑 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: monothetic 266 2false 375 dftru2 1545 bitru 1549 vjust 3437 ab0orv 4334 pwv 4855 int0 4912 0iin 5013 dfpo2 6244 orduninsuc 7776 fo1st 7944 fo2nd 7945 1st2val 7952 2nd2val 7953 eqer 8661 ener 8926 ruv 9497 acncc 10334 grothac 10724 grothtsk 10729 hashneq0 14271 rexfiuz 15255 sa-abvi 32387 signswch 34529 satfdm 35346 fobigcup 35878 elhf2 36153 limsucncmpi 36423 bj-vjust 37033 ruvALT 42646 oaordnrex 43272 omnord1ex 43281 oenord1ex 43292 uunT1 44757 nabctnabc 46919 clifte 46923 cliftet 46924 clifteta 46925 cliftetb 46926 confun5 46931 pldofph 46933 icht 47440 lco0 48416 line2ylem 48740 |
| Copyright terms: Public domain | W3C validator |