![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version |
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
2th.1 | ⊢ 𝜑 |
2th.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
2th | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2th.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | 2th.1 | . . 3 ⊢ 𝜑 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
5 | 2, 4 | impbii 209 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: monothetic 266 2false 375 dftru2 1542 bitru 1546 vjust 3479 ab0orv 4389 pwv 4909 int0 4967 0iin 5069 dfpo2 6318 orduninsuc 7864 fo1st 8033 fo2nd 8034 1st2val 8041 2nd2val 8042 eqer 8780 ener 9040 ruv 9640 acncc 10478 grothac 10868 grothtsk 10873 hashneq0 14400 rexfiuz 15383 sa-abvi 32472 signswch 34555 satfdm 35354 fobigcup 35882 elhf2 36157 limsucncmpi 36428 bj-vjust 37038 ruvALT 42656 oaordnrex 43285 omnord1ex 43294 oenord1ex 43305 uunT1 44778 nabctnabc 46881 clifte 46885 cliftet 46886 clifteta 46887 cliftetb 46888 confun5 46893 pldofph 46895 icht 47377 lco0 48273 line2ylem 48601 |
Copyright terms: Public domain | W3C validator |