| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 2th.1 | ⊢ 𝜑 |
| 2th.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| 2th | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2th.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2th.1 | . . 3 ⊢ 𝜑 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: monothetic 266 2false 375 dftru2 1546 bitru 1550 vjust 3437 vn0 4292 pwv 4853 int0 4910 0iin 5010 dfpo2 6243 orduninsuc 7773 fo1st 7941 fo2nd 7942 1st2val 7949 2nd2val 7950 eqer 8658 ener 8923 ruv 9491 acncc 10331 grothac 10721 grothtsk 10726 hashneq0 14271 rexfiuz 15255 sa-abvi 32423 signswch 34574 satfdm 35413 fobigcup 35942 elhf2 36219 limsucncmpi 36489 bj-vjust 37099 ruvALT 42772 oaordnrex 43398 omnord1ex 43407 oenord1ex 43418 uunT1 44882 nabctnabc 47041 clifte 47045 cliftet 47046 clifteta 47047 cliftetb 47048 confun5 47053 pldofph 47055 icht 47562 lco0 48538 line2ylem 48862 |
| Copyright terms: Public domain | W3C validator |