![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version |
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
2th.1 | ⊢ 𝜑 |
2th.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
2th | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2th.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | 2th.1 | . . 3 ⊢ 𝜑 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
5 | 2, 4 | impbii 209 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: monothetic 266 2false 375 dftru2 1542 bitru 1546 vjust 3489 dfnul3OLD 4358 ab0orv 4406 pwv 4928 int0 4986 0iin 5087 dfpo2 6327 orduninsuc 7880 fo1st 8050 fo2nd 8051 1st2val 8058 2nd2val 8059 eqer 8799 ener 9061 ruv 9671 acncc 10509 grothac 10899 grothtsk 10904 hashneq0 14413 rexfiuz 15396 sa-abvi 32475 signswch 34538 satfdm 35337 fobigcup 35864 elhf2 36139 limsucncmpi 36411 bj-vjust 37021 ruvALT 42624 oaordnrex 43257 omnord1ex 43266 oenord1ex 43277 uunT1 44751 nabctnabc 46846 clifte 46850 cliftet 46851 clifteta 46852 cliftetb 46853 confun5 46858 pldofph 46860 icht 47326 lco0 48156 line2ylem 48485 |
Copyright terms: Public domain | W3C validator |