| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 2th.1 | ⊢ 𝜑 |
| 2th.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| 2th | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2th.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2th.1 | . . 3 ⊢ 𝜑 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: monothetic 266 2false 375 dftru2 1545 bitru 1549 vjust 3445 ab0orv 4342 pwv 4864 int0 4922 0iin 5023 dfpo2 6257 orduninsuc 7799 fo1st 7967 fo2nd 7968 1st2val 7975 2nd2val 7976 eqer 8684 ener 8949 ruv 9531 acncc 10369 grothac 10759 grothtsk 10764 hashneq0 14305 rexfiuz 15290 sa-abvi 32422 signswch 34545 satfdm 35349 fobigcup 35881 elhf2 36156 limsucncmpi 36426 bj-vjust 37036 ruvALT 42650 oaordnrex 43277 omnord1ex 43286 oenord1ex 43297 uunT1 44762 nabctnabc 46925 clifte 46929 cliftet 46930 clifteta 46931 cliftetb 46932 confun5 46937 pldofph 46939 icht 47446 lco0 48409 line2ylem 48733 |
| Copyright terms: Public domain | W3C validator |