| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 2th.1 | ⊢ 𝜑 |
| 2th.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| 2th | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2th.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2th.1 | . . 3 ⊢ 𝜑 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: monothetic 266 2false 375 dftru2 1545 bitru 1549 vjust 3448 ab0orv 4346 pwv 4868 int0 4926 0iin 5028 dfpo2 6269 orduninsuc 7819 fo1st 7988 fo2nd 7989 1st2val 7996 2nd2val 7997 eqer 8707 ener 8972 ruv 9555 acncc 10393 grothac 10783 grothtsk 10788 hashneq0 14329 rexfiuz 15314 sa-abvi 32372 signswch 34552 satfdm 35356 fobigcup 35888 elhf2 36163 limsucncmpi 36433 bj-vjust 37043 ruvALT 42657 oaordnrex 43284 omnord1ex 43293 oenord1ex 43304 uunT1 44769 nabctnabc 46932 clifte 46936 cliftet 46937 clifteta 46938 cliftetb 46939 confun5 46944 pldofph 46946 icht 47453 lco0 48416 line2ylem 48740 |
| Copyright terms: Public domain | W3C validator |