![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version |
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
2th.1 | ⊢ 𝜑 |
2th.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
2th | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2th.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | 2th.1 | . . 3 ⊢ 𝜑 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
5 | 2, 4 | impbii 208 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: monothetic 266 2false 376 dftru2 1547 bitru 1551 vjust 3476 dfnul3OLD 4329 ab0orv 4379 pwv 4906 int0 4967 0iin 5068 dfpo2 6296 orduninsuc 7832 fo1st 7995 fo2nd 7996 1st2val 8003 2nd2val 8004 eqer 8738 ener 8997 ruv 9597 acncc 10435 grothac 10825 grothtsk 10830 hashneq0 14324 rexfiuz 15294 sa-abvi 31696 signswch 33572 satfdm 34360 fobigcup 34872 elhf2 35147 limsucncmpi 35330 bj-vjust 35936 ruvALT 41411 oaordnrex 42045 omnord1ex 42054 oenord1ex 42065 uunT1 43541 nabctnabc 45641 clifte 45645 cliftet 45646 clifteta 45647 cliftetb 45648 confun5 45653 pldofph 45655 icht 46120 lco0 47108 line2ylem 47437 |
Copyright terms: Public domain | W3C validator |