| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 2th.1 | ⊢ 𝜑 |
| 2th.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| 2th | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2th.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2th.1 | . . 3 ⊢ 𝜑 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: monothetic 266 2false 375 dftru2 1545 bitru 1549 vjust 3445 ab0orv 4342 pwv 4864 int0 4922 0iin 5023 dfpo2 6257 orduninsuc 7799 fo1st 7967 fo2nd 7968 1st2val 7975 2nd2val 7976 eqer 8684 ener 8949 ruv 9531 acncc 10369 grothac 10759 grothtsk 10764 hashneq0 14305 rexfiuz 15290 sa-abvi 32345 signswch 34525 satfdm 35329 fobigcup 35861 elhf2 36136 limsucncmpi 36406 bj-vjust 37016 ruvALT 42630 oaordnrex 43257 omnord1ex 43266 oenord1ex 43277 uunT1 44742 nabctnabc 46905 clifte 46909 cliftet 46910 clifteta 46911 cliftetb 46912 confun5 46917 pldofph 46919 icht 47426 lco0 48389 line2ylem 48713 |
| Copyright terms: Public domain | W3C validator |