| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 2th.1 | ⊢ 𝜑 |
| 2th.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| 2th | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2th.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2th.1 | . . 3 ⊢ 𝜑 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: monothetic 266 2false 375 dftru2 1545 bitru 1549 vjust 3460 ab0orv 4358 pwv 4880 int0 4938 0iin 5040 dfpo2 6285 orduninsuc 7838 fo1st 8008 fo2nd 8009 1st2val 8016 2nd2val 8017 eqer 8755 ener 9015 ruv 9616 acncc 10454 grothac 10844 grothtsk 10849 hashneq0 14382 rexfiuz 15366 sa-abvi 32424 signswch 34593 satfdm 35391 fobigcup 35918 elhf2 36193 limsucncmpi 36463 bj-vjust 37073 ruvALT 42692 oaordnrex 43319 omnord1ex 43328 oenord1ex 43339 uunT1 44804 nabctnabc 46960 clifte 46964 cliftet 46965 clifteta 46966 cliftetb 46967 confun5 46972 pldofph 46974 icht 47466 lco0 48403 line2ylem 48731 |
| Copyright terms: Public domain | W3C validator |