| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tru | Structured version Visualization version GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1544 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ⊤wtru 1542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1544 |
| This theorem is referenced by: dftru2 1546 trut 1547 mptru 1548 tbtru 1549 bitru 1550 trud 1551 truan 1552 fal 1555 truorfal 1579 falortru 1580 cadtru 1621 nftru 1805 altru 1808 extru 1976 sbtru 2070 vextru 2716 rextru 3063 rabtru 3640 ss2abi 4013 disjprg 5085 reusv2lem5 5338 rabxfr 5354 reuhyp 5356 euotd 5451 mptexgf 7156 elabrex 7176 elabrexg 7177 caovcl 7540 caovass 7546 caovdi 7565 ectocl 8707 fin1a2lem10 10300 riotaneg 12101 zriotaneg 12586 eflt 16026 efgi0 19632 efgi1 19633 0frgp 19691 mpomulcn 24785 iundisj2 25477 pige3ALT 26456 tanord1 26473 tanord 26474 logtayl 26596 n0sind 28261 nnsind 28298 iundisj2f 32570 iundisj2fi 32779 ordtconn 33938 tgoldbachgt 34676 nexntru 36448 bj-fal 36614 bj-axd2d 36637 bj-rabtr 36974 bj-rabtrALT 36975 bj-dfid2ALT 37109 bj-finsumval0 37329 wl-impchain-mp-x 37491 wl-impchain-com-1.x 37495 wl-impchain-com-n.m 37500 wl-impchain-a1-x 37504 wl-moteq 37558 ftc1anclem5 37747 lhpexle1 40117 3lexlogpow5ineq2 42158 3lexlogpow2ineq1 42161 3lexlogpow2ineq2 42162 mzpcompact2lem 42854 ifpdfor 43568 ifpim1 43572 ifpnot 43573 ifpid2 43574 ifpim2 43575 uun0.1 44880 uunT1 44882 un10 44890 un01 44891 dfbi1ALTa 45042 simprimi 45043 n0abso 45079 liminfvalxr 45891 ovn02 46676 rmotru 48913 reutru 48914 |
| Copyright terms: Public domain | W3C validator |