| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tru | Structured version Visualization version GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1543 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 |
| This theorem is referenced by: dftru2 1545 trut 1546 mptru 1547 tbtru 1548 bitru 1549 trud 1550 truan 1551 fal 1554 truorfal 1578 falortru 1579 cadtru 1620 nftru 1804 altru 1807 extru 1975 sbtru 2068 vextru 2714 rextru 3060 rabtru 3656 ss2abi 4030 ab0orv 4346 disjprg 5103 reusv2lem5 5357 rabxfr 5373 reuhyp 5375 euotd 5473 mptexgf 7196 elabrex 7216 elabrexg 7217 caovcl 7583 caovass 7589 caovdi 7608 ectocl 8756 fin1a2lem10 10362 riotaneg 12162 zriotaneg 12647 cshwsexaOLD 14790 eflt 16085 efgi0 19650 efgi1 19651 0frgp 19709 mpomulcn 24758 iundisj2 25450 pige3ALT 26429 tanord1 26446 tanord 26447 logtayl 26569 n0sind 28225 nnsind 28262 iundisj2f 32519 iundisj2fi 32720 ordtconn 33915 tgoldbachgt 34654 nexntru 36392 bj-fal 36558 bj-axd2d 36581 bj-rabtr 36918 bj-rabtrALT 36919 bj-dfid2ALT 37053 bj-finsumval0 37273 wl-impchain-mp-x 37435 wl-impchain-com-1.x 37439 wl-impchain-com-n.m 37444 wl-impchain-a1-x 37448 wl-moteq 37502 ftc1anclem5 37691 lhpexle1 40002 3lexlogpow5ineq2 42043 3lexlogpow2ineq1 42046 3lexlogpow2ineq2 42047 mzpcompact2lem 42739 ifpdfor 43454 ifpim1 43458 ifpnot 43459 ifpid2 43460 ifpim2 43461 uun0.1 44767 uunT1 44769 un10 44777 un01 44778 dfbi1ALTa 44929 simprimi 44930 n0abso 44966 liminfvalxr 45781 ovn02 46566 rmotru 48791 reutru 48792 |
| Copyright terms: Public domain | W3C validator |