Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tru | Structured version Visualization version GIF version |
Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
Ref | Expression |
---|---|
tru | ⊢ ⊤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
2 | df-tru 1542 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ⊤ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 |
This theorem is referenced by: dftru2 1544 trut 1545 mptru 1546 tbtru 1547 bitru 1548 trud 1549 truan 1550 fal 1553 truorfal 1577 falortru 1578 cadtru 1620 nftru 1804 altru 1807 extru 1977 sbtru 2068 vextru 2720 rabtru 3626 ss2abi 4005 ab0orv 4318 disjprgw 5076 disjprg 5077 reusv2lem5 5334 rabxfr 5350 reuhyp 5352 euotd 5440 mptexgf 7130 elabrex 7148 caovcl 7498 caovass 7504 caovdi 7523 ectocl 8605 fin1a2lem10 10211 riotaneg 12000 zriotaneg 12481 cshwsexa 14582 eflt 15871 efgi0 19371 efgi1 19372 0frgp 19430 iundisj2 24758 pige3ALT 25721 tanord1 25738 tanord 25739 logtayl 25860 iundisj2f 30974 iundisj2fi 31163 ordtconn 31920 tgoldbachgt 32688 nexntru 34638 bj-fal 34796 bj-axd2d 34820 bj-rabtr 35162 bj-rabtrALT 35163 bj-dfid2ALT 35280 bj-finsumval0 35500 wl-impchain-mp-x 35662 wl-impchain-com-1.x 35666 wl-impchain-com-n.m 35671 wl-impchain-a1-x 35675 wl-moteq 35717 ftc1anclem5 35898 lhpexle1 38064 3lexlogpow5ineq2 40105 3lexlogpow2ineq1 40108 3lexlogpow2ineq2 40109 mzpcompact2lem 40610 ifpdfor 41110 ifpim1 41114 ifpnot 41115 ifpid2 41116 ifpim2 41117 uun0.1 42436 uunT1 42438 un10 42446 un01 42447 elabrexg 42627 liminfvalxr 43373 ovn02 44156 rextru 46207 rmotru 46208 reutru 46209 |
Copyright terms: Public domain | W3C validator |