![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tru | Structured version Visualization version GIF version |
Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
Ref | Expression |
---|---|
tru | ⊢ ⊤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
2 | df-tru 1540 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ⊤ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ⊤wtru 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-tru 1540 |
This theorem is referenced by: dftru2 1542 trut 1543 mptru 1544 tbtru 1545 bitru 1546 trud 1547 truan 1548 fal 1551 truorfal 1575 falortru 1576 cadtru 1618 nftru 1802 altru 1805 extru 1975 sbtru 2067 vextru 2724 rextru 3083 rabtru 3705 ss2abi 4090 ab0orv 4406 disjprg 5162 reusv2lem5 5420 rabxfr 5436 reuhyp 5438 euotd 5532 mptexgf 7259 elabrex 7279 elabrexg 7280 caovcl 7644 caovass 7650 caovdi 7669 ectocl 8843 fin1a2lem10 10478 riotaneg 12274 zriotaneg 12756 cshwsexaOLD 14873 eflt 16165 efgi0 19762 efgi1 19763 0frgp 19821 mpomulcn 24910 iundisj2 25603 pige3ALT 26580 tanord1 26597 tanord 26598 logtayl 26720 n0sind 28355 nnsind 28381 iundisj2f 32612 iundisj2fi 32802 ordtconn 33871 tgoldbachgt 34640 nexntru 36370 bj-fal 36536 bj-axd2d 36559 bj-rabtr 36896 bj-rabtrALT 36897 bj-dfid2ALT 37031 bj-finsumval0 37251 wl-impchain-mp-x 37413 wl-impchain-com-1.x 37417 wl-impchain-com-n.m 37422 wl-impchain-a1-x 37426 wl-moteq 37468 ftc1anclem5 37657 lhpexle1 39965 3lexlogpow5ineq2 42012 3lexlogpow2ineq1 42015 3lexlogpow2ineq2 42016 mzpcompact2lem 42707 ifpdfor 43427 ifpim1 43431 ifpnot 43432 ifpid2 43433 ifpim2 43434 uun0.1 44749 uunT1 44751 un10 44759 un01 44760 liminfvalxr 45704 ovn02 46489 rmotru 48536 reutru 48537 |
Copyright terms: Public domain | W3C validator |