Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tru | Structured version Visualization version GIF version |
Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
Ref | Expression |
---|---|
tru | ⊢ ⊤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
2 | df-tru 1544 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ⊤ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ⊤wtru 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1544 |
This theorem is referenced by: dftru2 1546 trut 1547 mptru 1548 tbtru 1549 bitru 1550 trud 1551 truan 1552 fal 1555 truorfal 1579 falortru 1580 trunortruOLD 1591 trunorfalOLD 1593 cadtru 1626 nftru 1810 altru 1813 extru 1982 sbtru 2073 vextru 2723 rabtru 3622 ss2abi 4004 ab0orv 4317 disjprgw 5073 disjprg 5074 reusv2lem5 5328 rabxfr 5344 reuhyp 5346 euotd 5429 elabrex 7110 caovcl 7457 caovass 7463 caovdi 7482 ectocl 8548 fin1a2lem10 10149 riotaneg 11937 zriotaneg 12417 cshwsexa 14518 eflt 15807 efgi0 19307 efgi1 19308 0frgp 19366 iundisj2 24694 pige3ALT 25657 tanord1 25674 tanord 25675 logtayl 25796 iundisj2f 30908 iundisj2fi 31097 ordtconn 31854 tgoldbachgt 32622 nexntru 34572 bj-fal 34730 bj-axd2d 34754 bj-rabtr 35097 bj-rabtrALT 35098 bj-dfid2ALT 35215 bj-finsumval0 35435 wl-impchain-mp-x 35597 wl-impchain-com-1.x 35601 wl-impchain-com-n.m 35606 wl-impchain-a1-x 35610 wl-moteq 35652 ftc1anclem5 35833 lhpexle1 38001 3lexlogpow5ineq2 40043 3lexlogpow2ineq1 40046 3lexlogpow2ineq2 40047 mzpcompact2lem 40553 ifpdfor 41034 ifpim1 41038 ifpnot 41039 ifpid2 41040 ifpim2 41041 uun0.1 42351 uunT1 42353 un10 42361 un01 42362 elabrexg 42542 liminfvalxr 43278 ovn02 44060 rextru 46101 rmotru 46102 reutru 46103 |
Copyright terms: Public domain | W3C validator |