| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tru | Structured version Visualization version GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1543 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 |
| This theorem is referenced by: dftru2 1545 trut 1546 mptru 1547 tbtru 1548 bitru 1549 trud 1550 truan 1551 fal 1554 truorfal 1578 falortru 1579 cadtru 1620 nftru 1804 altru 1807 extru 1975 sbtru 2068 vextru 2715 rextru 3061 rabtru 3659 ss2abi 4033 ab0orv 4349 disjprg 5106 reusv2lem5 5360 rabxfr 5376 reuhyp 5378 euotd 5476 mptexgf 7199 elabrex 7219 elabrexg 7220 caovcl 7586 caovass 7592 caovdi 7611 ectocl 8759 fin1a2lem10 10369 riotaneg 12169 zriotaneg 12654 cshwsexaOLD 14797 eflt 16092 efgi0 19657 efgi1 19658 0frgp 19716 mpomulcn 24765 iundisj2 25457 pige3ALT 26436 tanord1 26453 tanord 26454 logtayl 26576 n0sind 28232 nnsind 28269 iundisj2f 32526 iundisj2fi 32727 ordtconn 33922 tgoldbachgt 34661 nexntru 36399 bj-fal 36565 bj-axd2d 36588 bj-rabtr 36925 bj-rabtrALT 36926 bj-dfid2ALT 37060 bj-finsumval0 37280 wl-impchain-mp-x 37442 wl-impchain-com-1.x 37446 wl-impchain-com-n.m 37451 wl-impchain-a1-x 37455 wl-moteq 37509 ftc1anclem5 37698 lhpexle1 40009 3lexlogpow5ineq2 42050 3lexlogpow2ineq1 42053 3lexlogpow2ineq2 42054 mzpcompact2lem 42746 ifpdfor 43461 ifpim1 43465 ifpnot 43466 ifpid2 43467 ifpim2 43468 uun0.1 44774 uunT1 44776 un10 44784 un01 44785 dfbi1ALTa 44936 simprimi 44937 n0abso 44973 liminfvalxr 45788 ovn02 46573 rmotru 48795 reutru 48796 |
| Copyright terms: Public domain | W3C validator |