| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tru | Structured version Visualization version GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1543 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 |
| This theorem is referenced by: dftru2 1545 trut 1546 mptru 1547 tbtru 1548 bitru 1549 trud 1550 truan 1551 fal 1554 truorfal 1578 falortru 1579 cadtru 1620 nftru 1804 altru 1807 extru 1975 sbtru 2067 vextru 2720 rextru 3067 rabtru 3668 ss2abi 4042 ab0orv 4358 disjprg 5115 reusv2lem5 5372 rabxfr 5388 reuhyp 5390 euotd 5488 mptexgf 7214 elabrex 7234 elabrexg 7235 caovcl 7601 caovass 7607 caovdi 7626 ectocl 8799 fin1a2lem10 10423 riotaneg 12221 zriotaneg 12706 cshwsexaOLD 14843 eflt 16135 efgi0 19701 efgi1 19702 0frgp 19760 mpomulcn 24809 iundisj2 25502 pige3ALT 26481 tanord1 26498 tanord 26499 logtayl 26621 n0sind 28277 nnsind 28314 iundisj2f 32571 iundisj2fi 32774 ordtconn 33956 tgoldbachgt 34695 nexntru 36422 bj-fal 36588 bj-axd2d 36611 bj-rabtr 36948 bj-rabtrALT 36949 bj-dfid2ALT 37083 bj-finsumval0 37303 wl-impchain-mp-x 37465 wl-impchain-com-1.x 37469 wl-impchain-com-n.m 37474 wl-impchain-a1-x 37478 wl-moteq 37532 ftc1anclem5 37721 lhpexle1 40027 3lexlogpow5ineq2 42068 3lexlogpow2ineq1 42071 3lexlogpow2ineq2 42072 mzpcompact2lem 42774 ifpdfor 43489 ifpim1 43493 ifpnot 43494 ifpid2 43495 ifpim2 43496 uun0.1 44802 uunT1 44804 un10 44812 un01 44813 dfbi1ALTa 44964 simprimi 44965 n0abso 45001 liminfvalxr 45812 ovn02 46597 rmotru 48782 reutru 48783 |
| Copyright terms: Public domain | W3C validator |