![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tru | Structured version Visualization version GIF version |
Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
Ref | Expression |
---|---|
tru | ⊢ ⊤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
2 | df-tru 1525 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
3 | 1, 2 | mpbir 232 | 1 ⊢ ⊤ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1520 = wceq 1522 ⊤wtru 1523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-tru 1525 |
This theorem is referenced by: dftru2 1527 trut 1528 mptru 1529 tbtru 1530 bitru 1531 trud 1532 truan 1533 fal 1536 truorfal 1560 falortru 1561 trunortru 1571 trunorfal 1572 cadtru 1602 nftru 1786 altru 1789 extru 1957 sbtru 2045 vextru 2782 rabtru 3615 disjprg 4958 reusv2lem5 5194 rabxfr 5210 reuhyp 5212 euotd 5294 elabrex 6867 caovcl 7198 caovass 7204 caovdi 7223 ectocl 8215 fin1a2lem10 9677 riotaneg 11468 zriotaneg 11945 cshwsexa 14022 eflt 15303 efgi0 18573 efgi1 18574 0frgp 18632 iundisj2 23833 pige3ALT 24788 tanord1 24802 tanord 24803 logtayl 24924 iundisj2f 30030 iundisj2fi 30206 ordtconn 30785 tgoldbachgt 31551 nexntru 33361 bj-axd2d 33532 bj-rabtr 33819 bj-rabtrALT 33820 bj-df-v 33945 bj-finsumval0 34119 wl-impchain-mp-x 34259 wl-impchain-com-1.x 34263 wl-impchain-com-n.m 34268 wl-impchain-a1-x 34272 wl-moteq 34285 ftc1anclem5 34502 lhpexle1 36675 mzpcompact2lem 38833 ifpdfor 39315 ifpim1 39319 ifpnot 39320 ifpid2 39321 ifpim2 39322 uun0.1 40651 uunT1 40653 un10 40661 un01 40662 elabrexg 40842 liminfvalxr 41606 ovn02 42392 |
Copyright terms: Public domain | W3C validator |