| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tru | Structured version Visualization version GIF version | ||
| Description: The truth value ⊤ is provable. (Contributed by Anthony Hart, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| tru | ⊢ ⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) | |
| 2 | df-tru 1543 | . 2 ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 |
| This theorem is referenced by: dftru2 1545 trut 1546 mptru 1547 tbtru 1548 bitru 1549 trud 1550 truan 1551 fal 1554 truorfal 1578 falortru 1579 cadtru 1620 nftru 1804 altru 1807 extru 1975 sbtru 2068 vextru 2714 rextru 3060 rabtru 3653 ss2abi 4027 ab0orv 4342 disjprg 5098 reusv2lem5 5352 rabxfr 5368 reuhyp 5370 euotd 5468 mptexgf 7178 elabrex 7198 elabrexg 7199 caovcl 7563 caovass 7569 caovdi 7588 ectocl 8733 fin1a2lem10 10338 riotaneg 12138 zriotaneg 12623 cshwsexaOLD 14766 eflt 16061 efgi0 19634 efgi1 19635 0frgp 19693 mpomulcn 24791 iundisj2 25483 pige3ALT 26462 tanord1 26479 tanord 26480 logtayl 26602 n0sind 28265 nnsind 28302 iundisj2f 32569 iundisj2fi 32770 ordtconn 33908 tgoldbachgt 34647 nexntru 36385 bj-fal 36551 bj-axd2d 36574 bj-rabtr 36911 bj-rabtrALT 36912 bj-dfid2ALT 37046 bj-finsumval0 37266 wl-impchain-mp-x 37428 wl-impchain-com-1.x 37432 wl-impchain-com-n.m 37437 wl-impchain-a1-x 37441 wl-moteq 37495 ftc1anclem5 37684 lhpexle1 39995 3lexlogpow5ineq2 42036 3lexlogpow2ineq1 42039 3lexlogpow2ineq2 42040 mzpcompact2lem 42732 ifpdfor 43447 ifpim1 43451 ifpnot 43452 ifpid2 43453 ifpim2 43454 uun0.1 44760 uunT1 44762 un10 44770 un01 44771 dfbi1ALTa 44922 simprimi 44923 n0abso 44959 liminfvalxr 45774 ovn02 46559 rmotru 48784 reutru 48785 |
| Copyright terms: Public domain | W3C validator |