MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trut Structured version   Visualization version   GIF version

Theorem trut 1549
Description: A proposition is equivalent to it being implied by . Closed form of mptru 1550. Dual of dfnot 1562. It is to tbtru 1551 what a1bi 366 is to tbt 373. (Contributed by BJ, 26-Oct-2019.)
Assertion
Ref Expression
trut (𝜑 ↔ (⊤ → 𝜑))

Proof of Theorem trut
StepHypRef Expression
1 tru 1547 . 2
21a1bi 366 1 (𝜑 ↔ (⊤ → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wtru 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-tru 1546
This theorem is referenced by:  truimfal  1567  euae  2660
  Copyright terms: Public domain W3C validator