Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd3ani Structured version   Visualization version   GIF version

Theorem dfvd3ani 41917
Description: Inference form of dfvd3an 41916. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd3ani.1 (   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )
Assertion
Ref Expression
dfvd3ani ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem dfvd3ani
StepHypRef Expression
1 dfvd3ani.1 . 2 (   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )
2 dfvd3an 41916 . 2 ((   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))
31, 2mpbi 233 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089  (   wvd1 41891  (   wvhc3 41910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-vd1 41892  df-vhc3 41911
This theorem is referenced by:  int3  41934  el0321old  42039
  Copyright terms: Public domain W3C validator