Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el0321old Structured version   Visualization version   GIF version

Theorem el0321old 42226
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
el0321old.1 𝜑
el0321old.2 (   (   𝜓   ,   𝜒   ,   𝜃   )   ▶   𝜏   )
el0321old.3 ((𝜑𝜏) → 𝜂)
Assertion
Ref Expression
el0321old (   (   𝜓   ,   𝜒   ,   𝜃   )   ▶   𝜂   )

Proof of Theorem el0321old
StepHypRef Expression
1 el0321old.1 . . 3 𝜑
2 el0321old.2 . . . 4 (   (   𝜓   ,   𝜒   ,   𝜃   )   ▶   𝜏   )
32dfvd3ani 42104 . . 3 ((𝜓𝜒𝜃) → 𝜏)
4 el0321old.3 . . 3 ((𝜑𝜏) → 𝜂)
51, 3, 4eel0321old 42225 . 2 ((𝜓𝜒𝜃) → 𝜂)
65dfvd3anir 42105 1 (   (   𝜓   ,   𝜒   ,   𝜃   )   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  (   wvd1 42078  (   wvhc3 42097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-vd1 42079  df-vhc3 42098
This theorem is referenced by:  suctrALTcfVD  42432
  Copyright terms: Public domain W3C validator