| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > el0321old | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| el0321old.1 | ⊢ 𝜑 |
| el0321old.2 | ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜏 ) |
| el0321old.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| el0321old | ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el0321old.1 | . . 3 ⊢ 𝜑 | |
| 2 | el0321old.2 | . . . 4 ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜏 ) | |
| 3 | 2 | dfvd3ani 44587 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| 4 | el0321old.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 3, 4 | eel0321old 44707 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜂) |
| 6 | 5 | dfvd3anir 44588 | 1 ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜂 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ( wvd1 44561 ( wvhc3 44580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44562 df-vhc3 44581 |
| This theorem is referenced by: suctrALTcfVD 44914 |
| Copyright terms: Public domain | W3C validator |