Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int3 Structured version   Visualization version   GIF version

Theorem int3 42232
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. Conventional form of int3 42232 is 3expia 1120. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
int3.1 (   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )
Assertion
Ref Expression
int3 (   (   𝜑   ,   𝜓   )   ▶   (𝜒𝜃)   )

Proof of Theorem int3
StepHypRef Expression
1 int3.1 . . . 4 (   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )
21dfvd3ani 42215 . . 3 ((𝜑𝜓𝜒) → 𝜃)
323expia 1120 . 2 ((𝜑𝜓) → (𝜒𝜃))
43dfvd2anir 42204 1 (   (   𝜑   ,   𝜓   )   ▶   (𝜒𝜃)   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42189  (   wvhc2 42200  (   wvhc3 42208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-vd1 42190  df-vhc2 42201  df-vhc3 42209
This theorem is referenced by:  suctrALTcfVD  42543
  Copyright terms: Public domain W3C validator