Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e30an Structured version   Visualization version   GIF version

Theorem e30an 42228
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e30an.1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
e30an.2 𝜏
e30an.3 ((𝜃𝜏) → 𝜂)
Assertion
Ref Expression
e30an (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )

Proof of Theorem e30an
StepHypRef Expression
1 e30an.1 . 2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
2 e30an.2 . 2 𝜏
3 e30an.3 . . 3 ((𝜃𝜏) → 𝜂)
43ex 416 . 2 (𝜃 → (𝜏𝜂))
51, 2, 4e30 42226 1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  (   wvd3 42069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-vd3 42072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator