![]() |
Metamath
Proof Explorer Theorem List (p. 442 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | gneispacern2 44101* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹) | ||
Theorem | gneispace0nelrn 44102* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) | ||
Theorem | gneispace0nelrn2 44103* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) → (𝐹‘𝑃) ≠ ∅) | ||
Theorem | gneispace0nelrn3 44104* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ¬ ∅ ∈ ran 𝐹) | ||
Theorem | gneispaceel 44105* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) | ||
Theorem | gneispaceel2 44106* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) | ||
Theorem | gneispacess 44107* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) | ||
Theorem | gneispacess2 44108* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) ∧ (𝑁 ∈ (𝐹‘𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹 ∧ 𝑁 ⊆ 𝑆)) → 𝑆 ∈ (𝐹‘𝑃)) | ||
See https://kerodon.net/ for a work in progress by Jacob Lurie. | ||
See https://kerodon.net/tag/0004 for introduction to the topological simplex of dimension 𝑁. | ||
Theorem | k0004lem1 44109 | Application of ssin 4260 to range of a function. (Contributed by RP, 1-Apr-2021.) |
⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) | ||
Theorem | k0004lem2 44110 | A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑m 𝐴))) | ||
Theorem | k0004lem3 44111 | When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∈ (𝐵 ↑m {𝐴}) ∧ (𝐹‘𝐴) = 𝐶) ↔ 𝐹 = {〈𝐴, 𝐶〉})) | ||
Theorem | k0004val 44112* | The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) | ||
Theorem | k0004ss1 44113* | The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) | ||
Theorem | k0004ss2 44114* | The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) | ||
Theorem | k0004ss3 44115* | The topological simplex of dimension 𝑁 is a subset of the base set of Euclidean space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(𝔼hil‘(𝑁 + 1)))) | ||
Theorem | k0004val0 44116* | The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝐴‘0) = {{〈1, 1〉}} | ||
Theorem | inductionexd 44117 | Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5)) | ||
Theorem | wwlemuld 44118 | Natural deduction form of lemul2d 13143. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | leeq1d 44119 | Specialization of breq1d 5176 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐶) | ||
Theorem | leeq2d 44120 | Specialization of breq2d 5178 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐷) | ||
Theorem | absmulrposd 44121 | Specialization of absmuld with absidd 15471. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(𝐴 · 𝐵)) = (𝐴 · (abs‘𝐵))) | ||
Theorem | imadisjld 44122 | Natural dduction form of one side of imadisj 6109. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐵) = ∅) | ||
Theorem | wnefimgd 44123 | The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) | ||
Theorem | fco2d 44124 | Natural deduction form of fco2 6774. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | ||
Theorem | wfximgfd 44125 | The value of a function on its domain is in the image of the function. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ (𝐹 “ 𝐴)) | ||
Theorem | extoimad 44126* | If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) | ||
Theorem | imo72b2lem0 44127* | Lemma for imo72b2 44134. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵))) = (2 · ((𝐹‘𝐴) · (𝐺‘𝐵)))) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) ⇒ ⊢ (𝜑 → ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < )) | ||
Theorem | suprleubrd 44128* | Natural deduction form of specialized suprleub 12261. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐵) | ||
Theorem | imo72b2lem2 44129* | Lemma for imo72b2 44134. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) ⇒ ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) | ||
Theorem | suprlubrd 44130* | Natural deduction form of specialized suprlub 12259. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑧 ∈ 𝐴 𝐵 < 𝑧) ⇒ ⊢ (𝜑 → 𝐵 < sup(𝐴, ℝ, < )) | ||
Theorem | imo72b2lem1 44131* | Lemma for imo72b2 44134. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) ⇒ ⊢ (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < )) | ||
Theorem | lemuldiv3d 44132 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → (𝐵 · 𝐴) ≤ 𝐶) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐵 ≤ (𝐶 / 𝐴)) | ||
Theorem | lemuldiv4d 44133 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐵 ≤ (𝐶 / 𝐴)) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) ≤ 𝐶) | ||
Theorem | imo72b2 44134* | IMO 1972 B2. (14th International Mathematical Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢 − 𝑣))) = (2 · ((𝐹‘𝑢) · (𝐺‘𝑣)))) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) ⇒ ⊢ (𝜑 → (abs‘(𝐺‘𝐵)) ≤ 1) | ||
This section formalizes theorems necessary to reproduce the equality and inequality generator described in "Neural Theorem Proving on Inequality Problems" http://aitp-conference.org/2020/abstract/paper_18.pdf. Other theorems required: 0red 11293 1red 11291 readdcld 11319 remulcld 11320 eqcomd 2746. | ||
Theorem | int-addcomd 44135 | AdditionCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐴)) | ||
Theorem | int-addassocd 44136 | AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + 𝐷)) | ||
Theorem | int-addsimpd 44137 | AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 0 = (𝐴 − 𝐵)) | ||
Theorem | int-mulcomd 44138 | MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴)) | ||
Theorem | int-mulassocd 44139 | MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · 𝐷)) | ||
Theorem | int-mulsimpd 44140 | MultiplicationSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → 1 = (𝐴 / 𝐵)) | ||
Theorem | int-leftdistd 44141 | AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) | ||
Theorem | int-rightdistd 44142 | AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) | ||
Theorem | int-sqdefd 44143 | SquareDefinition generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐴↑2)) | ||
Theorem | int-mul11d 44144 | First MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐵) | ||
Theorem | int-mul12d 44145 | Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐵) | ||
Theorem | int-add01d 44146 | First AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 0) = 𝐵) | ||
Theorem | int-add02d 44147 | Second AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (0 + 𝐴) = 𝐵) | ||
Theorem | int-sqgeq0d 44148 | SquareGEQZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | int-eqprincd 44149 | PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷)) | ||
Theorem | int-eqtransd 44150 | EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | int-eqmvtd 44151 | EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐵 − 𝐷)) | ||
Theorem | int-eqineqd 44152 | EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) | ||
Theorem | int-ineqmvtd 44153 | IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐷) ≤ 𝐶) | ||
Theorem | int-ineq1stprincd 44154 | FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐷 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐵 + 𝐷) ≤ (𝐴 + 𝐶)) | ||
Theorem | int-ineq2ndprincd 44155 | SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) ≤ (𝐴 · 𝐶)) | ||
Theorem | int-ineqtransd 44156 | InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ≤ 𝐴) | ||
This section formalizes theorems used in an n-digit addition proof generator. Other theorems required: deccl 12773 addcomli 11482 00id 11465 addridi 11477 addlidi 11478 eqid 2740 dec0h 12780 decadd 12812 decaddc 12813. | ||
Theorem | unitadd 44157 | Theorem used in conjunction with decaddc 12813 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝐴 + 𝐵) = 𝐹 & ⊢ (𝐶 + 1) = 𝐵 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 | ||
Theorem | gsumws3 44158 | Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝑆 + (𝑇 + 𝑈))) | ||
Theorem | gsumws4 44159 | Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) | ||
Theorem | amgm2d 44160 | Arithmetic-geometric mean inequality for 𝑛 = 2, derived from amgmlem 27051. (Contributed by Stanislas Polu, 8-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2)) | ||
Theorem | amgm3d 44161 | Arithmetic-geometric mean inequality for 𝑛 = 3. (Contributed by Stanislas Polu, 11-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3)) | ||
Theorem | amgm4d 44162 | Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4)) | ||
Theorem | spALT 44163 | sp 2184 can be proven from the other classic axioms. (Contributed by Rohan Ridenour, 3-Nov-2023.) (Proof modification is discouraged.) Use sp 2184 instead. (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | elnelneqd 44164 | Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
Theorem | elnelneq2d 44165 | Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
Theorem | rr-spce 44166* | Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | rexlimdvaacbv 44167* | Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3162. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜃)) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimddvcbvw 44168* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44167. The equivalent of this theorem without the bound variable change is rexlimddv 3167. Version of rexlimddvcbv 44169 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by GG, 2-Apr-2024.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | rexlimddvcbv 44169* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44167. The equivalent of this theorem without the bound variable change is rexlimddv 3167. Usage of this theorem is discouraged because it depends on ax-13 2380, see rexlimddvcbvw 44168 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | rr-elrnmpt3d 44170* | Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) | ||
Theorem | finnzfsuppd 44171* | If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | rr-phpd 44172 | Equivalent of php 9273 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | suceqd 44173 | Deduction associated with suceq 6461. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → suc 𝐴 = suc 𝐵) | ||
Theorem | tfindsd 44174* | Deduction associated with tfinds 7897. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = suc 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑦 ∈ On ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝜃) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ On) ⇒ ⊢ (𝜑 → 𝜂) | ||
Syntax | cmnring 44175 | Extend class notation with the monoid ring function. |
class MndRing | ||
Definition | df-mnring 44176* | Define the monoid ring function. This takes a monoid 𝑀 and a ring 𝑅 and produces a free left module over 𝑅 with a product extending the monoid function on 𝑀. (Contributed by Rohan Ridenour, 13-May-2024.) |
⊢ MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) | ||
Theorem | mnringvald 44177* | Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 )))))〉)) | ||
Theorem | mnringnmulrd 44178 | Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
Theorem | mnringnmulrdOLD 44179 | Obsolete version of mnringnmulrd 44178 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
Theorem | mnringbased 44180 | The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
Theorem | mnringbasedOLD 44181 | Obsolete version of mnringnmulrd 44178 as of 1-Nov-2024. The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
Theorem | mnringbaserd 44182 | The base set of a monoid ring. Converse of mnringbased 44180. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) | ||
Theorem | mnringelbased 44183 | Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp 0 ))) | ||
Theorem | mnringbasefd 44184 | Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) | ||
Theorem | mnringbasefsuppd 44185 | Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 finSupp 0 ) | ||
Theorem | mnringaddgd 44186 | The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
Theorem | mnringaddgdOLD 44187 | Obsolete version of mnringaddgd 44186 as of 1-Nov-2024. The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
Theorem | mnring0gd 44188 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (0g‘𝑉) = (0g‘𝐹)) | ||
Theorem | mnring0g2d 44189 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × { 0 }) = (0g‘𝐹)) | ||
Theorem | mnringmulrd 44190* | The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 ))))) = (.r‘𝐹)) | ||
Theorem | mnringscad 44191 | The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
Theorem | mnringscadOLD 44192 | Obsolete version of mnringscad 44191 as of 1-Nov-2024. The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
Theorem | mnringvscad 44193 | The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
Theorem | mnringvscadOLD 44194 | Obsolete version of mnringvscad 44193 as of 1-Nov-2024. The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
Theorem | mnringlmodd 44195 | Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹 ∈ LMod) | ||
Theorem | mnringmulrvald 44196* | Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∙ = (.r‘𝑅) & ⊢ 𝟎 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) | ||
Theorem | mnringmulrcld 44197 | Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | ||
Theorem | gru0eld 44198 | A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → ∅ ∈ 𝐺) | ||
Theorem | grusucd 44199 | Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → suc 𝐴 ∈ 𝐺) | ||
Theorem | r1rankcld 44200 | Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) ⇒ ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |