| Metamath
Proof Explorer Theorem List (p. 442 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
Any neighborhood space is an open set topology and any open set topology is a neighborhood space. Seifert and Threlfall define a generic neighborhood space which is a superset of what is now generally used and related concepts and the following will show that those definitions apply to elements of Top. Seifert and Threlfall do not allow neighborhood spaces on the empty set while sn0top 22935 is an example of a topology with an empty base set. This divergence is unlikely to pose serious problems. | ||
| Theorem | gneispa 44101* | Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) | ||
| Theorem | gneispb 44102* | Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))) | ||
| Theorem | gneispace2 44103* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) | ||
| Theorem | gneispace3 44104* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) | ||
| Theorem | gneispace 44105* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 14-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))))) | ||
| Theorem | gneispacef 44106* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) | ||
| Theorem | gneispacef2 44107* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:dom 𝐹⟶𝒫 𝒫 dom 𝐹) | ||
| Theorem | gneispacefun 44108* | A generic neighborhood space is a function. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → Fun 𝐹) | ||
| Theorem | gneispacern 44109* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) | ||
| Theorem | gneispacern2 44110* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹) | ||
| Theorem | gneispace0nelrn 44111* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) | ||
| Theorem | gneispace0nelrn2 44112* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) → (𝐹‘𝑃) ≠ ∅) | ||
| Theorem | gneispace0nelrn3 44113* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ¬ ∅ ∈ ran 𝐹) | ||
| Theorem | gneispaceel 44114* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) | ||
| Theorem | gneispaceel2 44115* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) | ||
| Theorem | gneispacess 44116* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) | ||
| Theorem | gneispacess2 44117* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) ∧ (𝑁 ∈ (𝐹‘𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹 ∧ 𝑁 ⊆ 𝑆)) → 𝑆 ∈ (𝐹‘𝑃)) | ||
See https://kerodon.net/ for a work in progress by Jacob Lurie. | ||
See https://kerodon.net/tag/0004 for introduction to the topological simplex of dimension 𝑁. | ||
| Theorem | k0004lem1 44118 | Application of ssin 4214 to range of a function. (Contributed by RP, 1-Apr-2021.) |
| ⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) | ||
| Theorem | k0004lem2 44119 | A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑m 𝐴))) | ||
| Theorem | k0004lem3 44120 | When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∈ (𝐵 ↑m {𝐴}) ∧ (𝐹‘𝐴) = 𝐶) ↔ 𝐹 = {〈𝐴, 𝐶〉})) | ||
| Theorem | k0004val 44121* | The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) | ||
| Theorem | k0004ss1 44122* | The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) | ||
| Theorem | k0004ss2 44123* | The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) | ||
| Theorem | k0004ss3 44124* | The topological simplex of dimension 𝑁 is a subset of the base set of Euclidean space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(𝔼hil‘(𝑁 + 1)))) | ||
| Theorem | k0004val0 44125* | The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝐴‘0) = {{〈1, 1〉}} | ||
| Theorem | inductionexd 44126 | Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5)) | ||
| Theorem | wwlemuld 44127 | Natural deduction form of lemul2d 13093. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | leeq1d 44128 | Specialization of breq1d 5129 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐶) | ||
| Theorem | leeq2d 44129 | Specialization of breq2d 5131 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐷) | ||
| Theorem | absmulrposd 44130 | Specialization of absmuld with absidd 15439. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(𝐴 · 𝐵)) = (𝐴 · (abs‘𝐵))) | ||
| Theorem | imadisjld 44131 | Natural dduction form of one side of imadisj 6067. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐵) = ∅) | ||
| Theorem | wnefimgd 44132 | The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) | ||
| Theorem | fco2d 44133 | Natural deduction form of fco2 6731. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | ||
| Theorem | wfximgfd 44134 | The value of a function on its domain is in the image of the function. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ (𝐹 “ 𝐴)) | ||
| Theorem | extoimad 44135* | If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) | ||
| Theorem | imo72b2lem0 44136* | Lemma for imo72b2 44143. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵))) = (2 · ((𝐹‘𝐴) · (𝐺‘𝐵)))) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) ⇒ ⊢ (𝜑 → ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < )) | ||
| Theorem | suprleubrd 44137* | Natural deduction form of specialized suprleub 12206. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐵) | ||
| Theorem | imo72b2lem2 44138* | Lemma for imo72b2 44143. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) ⇒ ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) | ||
| Theorem | suprlubrd 44139* | Natural deduction form of specialized suprlub 12204. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑧 ∈ 𝐴 𝐵 < 𝑧) ⇒ ⊢ (𝜑 → 𝐵 < sup(𝐴, ℝ, < )) | ||
| Theorem | imo72b2lem1 44140* | Lemma for imo72b2 44143. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) ⇒ ⊢ (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < )) | ||
| Theorem | lemuldiv3d 44141 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → (𝐵 · 𝐴) ≤ 𝐶) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐵 ≤ (𝐶 / 𝐴)) | ||
| Theorem | lemuldiv4d 44142 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐵 ≤ (𝐶 / 𝐴)) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) ≤ 𝐶) | ||
| Theorem | imo72b2 44143* | IMO 1972 B2. (14th International Mathematical Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢 − 𝑣))) = (2 · ((𝐹‘𝑢) · (𝐺‘𝑣)))) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ (𝐹‘𝑥) ≠ 0) ⇒ ⊢ (𝜑 → (abs‘(𝐺‘𝐵)) ≤ 1) | ||
This section formalizes theorems necessary to reproduce the equality and inequality generator described in "Neural Theorem Proving on Inequality Problems" http://aitp-conference.org/2020/abstract/paper_18.pdf. Other theorems required: 0red 11236 1red 11234 readdcld 11262 remulcld 11263 eqcomd 2741. | ||
| Theorem | int-addcomd 44144 | AdditionCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐴)) | ||
| Theorem | int-addassocd 44145 | AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + 𝐷)) | ||
| Theorem | int-addsimpd 44146 | AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 0 = (𝐴 − 𝐵)) | ||
| Theorem | int-mulcomd 44147 | MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴)) | ||
| Theorem | int-mulassocd 44148 | MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · 𝐷)) | ||
| Theorem | int-mulsimpd 44149 | MultiplicationSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → 1 = (𝐴 / 𝐵)) | ||
| Theorem | int-leftdistd 44150 | AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) | ||
| Theorem | int-rightdistd 44151 | AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) | ||
| Theorem | int-sqdefd 44152 | SquareDefinition generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐴↑2)) | ||
| Theorem | int-mul11d 44153 | First MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐵) | ||
| Theorem | int-mul12d 44154 | Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐵) | ||
| Theorem | int-add01d 44155 | First AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 0) = 𝐵) | ||
| Theorem | int-add02d 44156 | Second AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (0 + 𝐴) = 𝐵) | ||
| Theorem | int-sqgeq0d 44157 | SquareGEQZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | ||
| Theorem | int-eqprincd 44158 | PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷)) | ||
| Theorem | int-eqtransd 44159 | EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
| Theorem | int-eqmvtd 44160 | EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐵 − 𝐷)) | ||
| Theorem | int-eqineqd 44161 | EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) | ||
| Theorem | int-ineqmvtd 44162 | IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐷) ≤ 𝐶) | ||
| Theorem | int-ineq1stprincd 44163 | FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐷 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐵 + 𝐷) ≤ (𝐴 + 𝐶)) | ||
| Theorem | int-ineq2ndprincd 44164 | SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) ≤ (𝐴 · 𝐶)) | ||
| Theorem | int-ineqtransd 44165 | InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ≤ 𝐴) | ||
This section formalizes theorems used in an n-digit addition proof generator. Other theorems required: deccl 12721 addcomli 11425 00id 11408 addridi 11420 addlidi 11421 eqid 2735 dec0h 12728 decadd 12760 decaddc 12761. | ||
| Theorem | unitadd 44166 | Theorem used in conjunction with decaddc 12761 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝐴 + 𝐵) = 𝐹 & ⊢ (𝐶 + 1) = 𝐵 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 | ||
| Theorem | gsumws3 44167 | Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝑆 + (𝑇 + 𝑈))) | ||
| Theorem | gsumws4 44168 | Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) | ||
| Theorem | amgm2d 44169 | Arithmetic-geometric mean inequality for 𝑛 = 2, derived from amgmlem 26950. (Contributed by Stanislas Polu, 8-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2)) | ||
| Theorem | amgm3d 44170 | Arithmetic-geometric mean inequality for 𝑛 = 3. (Contributed by Stanislas Polu, 11-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3)) | ||
| Theorem | amgm4d 44171 | Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4)) | ||
| Theorem | spALT 44172 | sp 2183 can be proven from the other classic axioms. (Contributed by Rohan Ridenour, 3-Nov-2023.) (Proof modification is discouraged.) Use sp 2183 instead. (New usage is discouraged.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | elnelneqd 44173 | Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
| Theorem | elnelneq2d 44174 | Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
| Theorem | rr-spce 44175* | Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | rexlimdvaacbv 44176* | Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3142. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜃)) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | rexlimddvcbvw 44177* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44176. The equivalent of this theorem without the bound variable change is rexlimddv 3147. Version of rexlimddvcbv 44178 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by GG, 2-Apr-2024.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | rexlimddvcbv 44178* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44176. The equivalent of this theorem without the bound variable change is rexlimddv 3147. Usage of this theorem is discouraged because it depends on ax-13 2376, see rexlimddvcbvw 44177 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | rr-elrnmpt3d 44179* | Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) | ||
| Theorem | rr-phpd 44180 | Equivalent of php 9219 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | suceqd 44181 | Deduction associated with suceq 6419. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → suc 𝐴 = suc 𝐵) | ||
| Theorem | tfindsd 44182* | Deduction associated with tfinds 7853. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| ⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = suc 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑦 ∈ On ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝜃) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ On) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Syntax | cmnring 44183 | Extend class notation with the monoid ring function. |
| class MndRing | ||
| Definition | df-mnring 44184* | Define the monoid ring function. This takes a monoid 𝑀 and a ring 𝑅 and produces a free left module over 𝑅 with a product extending the monoid function on 𝑀. (Contributed by Rohan Ridenour, 13-May-2024.) |
| ⊢ MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) | ||
| Theorem | mnringvald 44185* | Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 )))))〉)) | ||
| Theorem | mnringnmulrd 44186 | Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
| Theorem | mnringbased 44187 | The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
| Theorem | mnringbaserd 44188 | The base set of a monoid ring. Converse of mnringbased 44187. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) | ||
| Theorem | mnringelbased 44189 | Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp 0 ))) | ||
| Theorem | mnringbasefd 44190 | Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) | ||
| Theorem | mnringbasefsuppd 44191 | Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 finSupp 0 ) | ||
| Theorem | mnringaddgd 44192 | The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
| Theorem | mnring0gd 44193 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (0g‘𝑉) = (0g‘𝐹)) | ||
| Theorem | mnring0g2d 44194 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × { 0 }) = (0g‘𝐹)) | ||
| Theorem | mnringmulrd 44195* | The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 ))))) = (.r‘𝐹)) | ||
| Theorem | mnringscad 44196 | The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
| Theorem | mnringvscad 44197 | The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
| Theorem | mnringlmodd 44198 | Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹 ∈ LMod) | ||
| Theorem | mnringmulrvald 44199* | Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∙ = (.r‘𝑅) & ⊢ 𝟎 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) | ||
| Theorem | mnringmulrcld 44200 | Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |