| Metamath
Proof Explorer Theorem List (p. 442 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ntrclskb 44101* | The interiors of disjoint sets are disjoint if and only if the closures of sets that span the base set also span the base set. (Contributed by RP, 10-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) | ||
| Theorem | ntrclsk3 44102* | The intersection of interiors of a every pair is a subset of the interior of the intersection of the pair if an only if the closure of the union of every pair is a subset of the union of closures of the pair. (Contributed by RP, 19-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠 ∪ 𝑡)) ⊆ ((𝐾‘𝑠) ∪ (𝐾‘𝑡)))) | ||
| Theorem | ntrclsk13 44103* | The interior of the intersection of any pair is equal to the intersection of the interiors if and only if the closure of the unions of any pair is equal to the union of closures. (Contributed by RP, 19-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠 ∪ 𝑡)) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡)))) | ||
| Theorem | ntrclsk4 44104* | Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠))) | ||
| Theorem | ntrneibex 44105* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | ntrneircomplex 44106* | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||
| Theorem | ntrneif1o 44107* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, we may characterize the relation as part of a 1-to-1 onto function. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
| Theorem | ntrneiiex 44108* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the interior function exists. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | ||
| Theorem | ntrneinex 44109* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the neighborhood function exists. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
| Theorem | ntrneicnv 44110* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then converse of 𝐹 is known. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → ◡𝐹 = (𝐵𝑂𝒫 𝐵)) | ||
| Theorem | ntrneifv1 44111* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of 𝐹 is the neighborhood function. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) | ||
| Theorem | ntrneifv2 44112* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) | ||
| Theorem | ntrneiel 44113* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) | ||
| Theorem | ntrneifv3 44114* | The value of the neighbors (convergents) expressed in terms of the interior (closure) function. (Contributed by RP, 26-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑠)}) | ||
| Theorem | ntrneineine0lem 44115* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) | ||
| Theorem | ntrneineine1lem 44116* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) | ||
| Theorem | ntrneifv4 44117* | The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) | ||
| Theorem | ntrneiel2 44118* | Membership in iterated interior of a set is equivalent to there existing a particular neighborhood of that member such that points are members of that neighborhood if and only if the set is a neighborhood of each of those points. (Contributed by RP, 11-Jul-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐼‘(𝐼‘𝑆)) ↔ ∃𝑢 ∈ (𝑁‘𝑋)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑆 ∈ (𝑁‘𝑦)))) | ||
| Theorem | ntrneineine0 44119* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅)) | ||
| Theorem | ntrneineine1 44120* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ 𝒫 𝐵)) | ||
| Theorem | ntrneicls00 44121* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥))) | ||
| Theorem | ntrneicls11 44122* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) | ||
| Theorem | ntrneiiso 44123* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior function is isotonic hold equally. (Contributed by RP, 3-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) | ||
| Theorem | ntrneik2 44124* | An interior function is contracting if and only if all the neighborhoods of a point contain that point. (Contributed by RP, 11-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘𝑠) ⊆ 𝑠 ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) → 𝑥 ∈ 𝑠))) | ||
| Theorem | ntrneix2 44125* | An interior (closure) function is expansive if and only if all subsets which contain a point are neighborhoods (convergents) of that point. (Contributed by RP, 11-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥)))) | ||
| Theorem | ntrneikb 44126* | The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ≠ ∅))) | ||
| Theorem | ntrneixb 44127* | The interiors (closures) of sets that span the base set also span the base set if and only if the neighborhoods (convergents) of every point contain at least one of every pair of sets that span the base set. (Contributed by RP, 11-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) | ||
| Theorem | ntrneik3 44128* | The intersection of interiors of any pair is a subset of the interior of the intersection if and only if the intersection of any two neighborhoods of a point is also a neighborhood. (Contributed by RP, 19-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | ||
| Theorem | ntrneix3 44129* | The closure of the union of any pair is a subset of the union of closures if and only if the union of any pair belonging to the convergents of a point implies at least one of the pair belongs to the the convergents of that point. (Contributed by RP, 19-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∪ 𝑡)) ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) ∈ (𝑁‘𝑥) → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) | ||
| Theorem | ntrneik13 44130* | The interior of the intersection of any pair equals intersection of interiors if and only if the intersection of any pair belonging to the neighborhood of a point is equivalent to both of the pair belonging to the neighborhood of that point. (Contributed by RP, 19-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) | ||
| Theorem | ntrneix13 44131* | The closure of the union of any pair is equal to the union of closures if and only if the union of any pair belonging to the convergents of a point if equivalent to at least one of the pain belonging to the convergents of that point. (Contributed by RP, 19-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∪ 𝑡)) = ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) | ||
| Theorem | ntrneik4w 44132* | Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)))) | ||
| Theorem | ntrneik4 44133* | Idempotence of the interior function is equivalent to stating a set, 𝑠, is a neighborhood of a point, 𝑥 is equivalent to there existing a special neighborhood, 𝑢, of 𝑥 such that a point is an element of the special neighborhood if and only if 𝑠 is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) | ||
| Theorem | clsneibex 44134 | If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
| ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | clsneircomplex 44135 | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
| ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||
| Theorem | clsneif1o 44136* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
| Theorem | clsneicnv 44137* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → ◡𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵))) | ||
| Theorem | clsneikex 44138* | If closure and neighborhoods functions are related, the closure function exists. (Contributed by RP, 27-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | ||
| Theorem | clsneinex 44139* | If closure and neighborhoods functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
| Theorem | clsneiel1 44140* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) | ||
| Theorem | clsneiel2 44141* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑆 ∈ (𝑁‘𝑋))) | ||
| Theorem | clsneifv3 44142* | Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑠))}) | ||
| Theorem | clsneifv4 44143* | Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝐾‘𝑆) = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) | ||
| Theorem | neicvgbex 44144 | If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
| ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | neicvgrcomplex 44145 | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
| ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||
| Theorem | neicvgf1o 44146* | If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
| Theorem | neicvgnvo 44147* | If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → ◡𝐻 = 𝐻) | ||
| Theorem | neicvgnvor 44148* | If neighborhood and convergent functions are related by operator 𝐻, the relationship holds with the functions swapped. (Contributed by RP, 11-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝑀𝐻𝑁) | ||
| Theorem | neicvgmex 44149* | If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
| Theorem | neicvgnex 44150* | If the neighborhoods and convergents functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
| Theorem | neicvgel1 44151* | A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑆 ∈ (𝑁‘𝑋) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑀‘𝑋))) | ||
| Theorem | neicvgel2 44152* | The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋) ↔ ¬ 𝑆 ∈ (𝑀‘𝑋))) | ||
| Theorem | neicvgfv 44153* | The value of the neighborhoods (convergents) in terms of the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021.) |
| ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) | ||
| Theorem | ntrrn 44154 | The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) | ||
| Theorem | ntrf 44155 | The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) | ||
| Theorem | ntrf2 44156 | The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋) | ||
| Theorem | ntrelmap 44157 | The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) | ||
| Theorem | clsf2 44158 | The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22961. (Contributed by RP, 22-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) | ||
| Theorem | clselmap 44159 | The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) | ||
| Theorem | dssmapntrcls 44160* | The interior and closure operators on a topology are duals of each other. See also kur14lem2 35239. (Contributed by RP, 21-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝑋) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 = (𝐷‘𝐾)) | ||
| Theorem | dssmapclsntr 44161* | The closure and interior operators on a topology are duals of each other. See also kur14lem2 35239. (Contributed by RP, 22-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝑋) ⇒ ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) | ||
Any neighborhood space is an open set topology and any open set topology is a neighborhood space. Seifert and Threlfall define a generic neighborhood space which is a superset of what is now generally used and related concepts and the following will show that those definitions apply to elements of Top. Seifert and Threlfall do not allow neighborhood spaces on the empty set while sn0top 22912 is an example of a topology with an empty base set. This divergence is unlikely to pose serious problems. | ||
| Theorem | gneispa 44162* | Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) | ||
| Theorem | gneispb 44163* | Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))) | ||
| Theorem | gneispace2 44164* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) | ||
| Theorem | gneispace3 44165* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) | ||
| Theorem | gneispace 44166* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 14-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))))) | ||
| Theorem | gneispacef 44167* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) | ||
| Theorem | gneispacef2 44168* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:dom 𝐹⟶𝒫 𝒫 dom 𝐹) | ||
| Theorem | gneispacefun 44169* | A generic neighborhood space is a function. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → Fun 𝐹) | ||
| Theorem | gneispacern 44170* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) | ||
| Theorem | gneispacern2 44171* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹) | ||
| Theorem | gneispace0nelrn 44172* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) | ||
| Theorem | gneispace0nelrn2 44173* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) → (𝐹‘𝑃) ≠ ∅) | ||
| Theorem | gneispace0nelrn3 44174* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ¬ ∅ ∈ ran 𝐹) | ||
| Theorem | gneispaceel 44175* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) | ||
| Theorem | gneispaceel2 44176* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) | ||
| Theorem | gneispacess 44177* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) | ||
| Theorem | gneispacess2 44178* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
| ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) ∧ (𝑁 ∈ (𝐹‘𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹 ∧ 𝑁 ⊆ 𝑆)) → 𝑆 ∈ (𝐹‘𝑃)) | ||
See https://kerodon.net/ for a work in progress by Jacob Lurie. | ||
See https://kerodon.net/tag/0004 for introduction to the topological simplex of dimension 𝑁. | ||
| Theorem | k0004lem1 44179 | Application of ssin 4189 to range of a function. (Contributed by RP, 1-Apr-2021.) |
| ⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) | ||
| Theorem | k0004lem2 44180 | A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑m 𝐴))) | ||
| Theorem | k0004lem3 44181 | When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∈ (𝐵 ↑m {𝐴}) ∧ (𝐹‘𝐴) = 𝐶) ↔ 𝐹 = {〈𝐴, 𝐶〉})) | ||
| Theorem | k0004val 44182* | The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) | ||
| Theorem | k0004ss1 44183* | The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) | ||
| Theorem | k0004ss2 44184* | The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) | ||
| Theorem | k0004ss3 44185* | The topological simplex of dimension 𝑁 is a subset of the base set of Euclidean space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(𝔼hil‘(𝑁 + 1)))) | ||
| Theorem | k0004val0 44186* | The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝐴‘0) = {{〈1, 1〉}} | ||
| Theorem | inductionexd 44187 | Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5)) | ||
| Theorem | wwlemuld 44188 | Natural deduction form of lemul2d 12975. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | leeq1d 44189 | Specialization of breq1d 5101 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐶) | ||
| Theorem | leeq2d 44190 | Specialization of breq2d 5103 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐷) | ||
| Theorem | absmulrposd 44191 | Specialization of absmuld with absidd 15327. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(𝐴 · 𝐵)) = (𝐴 · (abs‘𝐵))) | ||
| Theorem | imadisjld 44192 | Natural dduction form of one side of imadisj 6029. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → (dom 𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐵) = ∅) | ||
| Theorem | wnefimgd 44193 | The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) | ||
| Theorem | fco2d 44194 | Natural deduction form of fco2 6677. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | ||
| Theorem | wfximgfd 44195 | The value of a function on its domain is in the image of the function. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ (𝐹 “ 𝐴)) | ||
| Theorem | extoimad 44196* | If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 𝐶) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥 ≤ 𝐶) | ||
| Theorem | imo72b2lem0 44197* | Lemma for imo72b2 44204. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴 − 𝐵))) = (2 · ((𝐹‘𝐴) · (𝐺‘𝐵)))) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹‘𝑦)) ≤ 1) ⇒ ⊢ (𝜑 → ((abs‘(𝐹‘𝐴)) · (abs‘(𝐺‘𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < )) | ||
| Theorem | suprleubrd 44198* | Natural deduction form of specialized suprleub 12085. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐵) | ||
| Theorem | imo72b2lem2 44199* | Lemma for imo72b2 44204. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) ⇒ ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) | ||
| Theorem | suprlubrd 44200* | Natural deduction form of specialized suprlub 12083. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑧 ∈ 𝐴 𝐵 < 𝑧) ⇒ ⊢ (𝜑 → 𝐵 < sup(𝐴, ℝ, < )) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |