Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee01an Structured version   Visualization version   GIF version

Theorem ee01an 42202
Description: e01an 42201 without virtual deductions. sylancr 586 is also a form of e01an 42201 without virtual deduction, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee01an.1 𝜑
ee01an.2 (𝜓𝜒)
ee01an.3 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
ee01an (𝜓𝜃)

Proof of Theorem ee01an
StepHypRef Expression
1 ee01an.1 . 2 𝜑
2 ee01an.2 . 2 (𝜓𝜒)
3 ee01an.3 . 2 ((𝜑𝜒) → 𝜃)
41, 2, 3sylancr 586 1 (𝜓𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator