| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e10.2 | ⊢ 𝜒 |
| e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | vd01 44594 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
| 4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 5 | 1, 3, 4 | e11 44685 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44567 |
| This theorem is referenced by: e10an 44692 en3lpVD 44841 3orbi123VD 44846 sbc3orgVD 44847 exbiriVD 44850 3impexpVD 44852 3impexpbicomVD 44853 al2imVD 44858 equncomVD 44864 trsbcVD 44873 sbcssgVD 44879 csbingVD 44880 onfrALTVD 44887 csbsngVD 44889 csbxpgVD 44890 csbresgVD 44891 csbrngVD 44892 csbima12gALTVD 44893 csbunigVD 44894 csbfv12gALTVD 44895 con5VD 44896 hbimpgVD 44900 hbalgVD 44901 hbexgVD 44902 ax6e2eqVD 44903 ax6e2ndeqVD 44905 e2ebindVD 44908 sb5ALTVD 44909 |
| Copyright terms: Public domain | W3C validator |