| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e10.2 | ⊢ 𝜒 |
| e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | vd01 44560 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
| 4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 5 | 1, 3, 4 | e11 44651 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44533 |
| This theorem is referenced by: e10an 44658 en3lpVD 44807 3orbi123VD 44812 sbc3orgVD 44813 exbiriVD 44816 3impexpVD 44818 3impexpbicomVD 44819 al2imVD 44824 equncomVD 44830 trsbcVD 44839 sbcssgVD 44845 csbingVD 44846 onfrALTVD 44853 csbsngVD 44855 csbxpgVD 44856 csbresgVD 44857 csbrngVD 44858 csbima12gALTVD 44859 csbunigVD 44860 csbfv12gALTVD 44861 con5VD 44862 hbimpgVD 44866 hbalgVD 44867 hbexgVD 44868 ax6e2eqVD 44869 ax6e2ndeqVD 44871 e2ebindVD 44874 sb5ALTVD 44875 |
| Copyright terms: Public domain | W3C validator |