| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e10.2 | ⊢ 𝜒 |
| e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | vd01 44622 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
| 4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 5 | 1, 3, 4 | e11 44713 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44595 |
| This theorem is referenced by: e10an 44720 en3lpVD 44869 3orbi123VD 44874 sbc3orgVD 44875 exbiriVD 44878 3impexpVD 44880 3impexpbicomVD 44881 al2imVD 44886 equncomVD 44892 trsbcVD 44901 sbcssgVD 44907 csbingVD 44908 onfrALTVD 44915 csbsngVD 44917 csbxpgVD 44918 csbresgVD 44919 csbrngVD 44920 csbima12gALTVD 44921 csbunigVD 44922 csbfv12gALTVD 44923 con5VD 44924 hbimpgVD 44928 hbalgVD 44929 hbexgVD 44930 ax6e2eqVD 44931 ax6e2ndeqVD 44933 e2ebindVD 44936 sb5ALTVD 44937 |
| Copyright terms: Public domain | W3C validator |