![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e10.2 | ⊢ 𝜒 |
e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e10.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | vd01 43348 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
5 | 1, 3, 4 | e11 43439 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43321 |
This theorem is referenced by: e10an 43446 en3lpVD 43596 3orbi123VD 43601 sbc3orgVD 43602 exbiriVD 43605 3impexpVD 43607 3impexpbicomVD 43608 al2imVD 43613 equncomVD 43619 trsbcVD 43628 sbcssgVD 43634 csbingVD 43635 onfrALTVD 43642 csbsngVD 43644 csbxpgVD 43645 csbresgVD 43646 csbrngVD 43647 csbima12gALTVD 43648 csbunigVD 43649 csbfv12gALTVD 43650 con5VD 43651 hbimpgVD 43655 hbalgVD 43656 hbexgVD 43657 ax6e2eqVD 43658 ax6e2ndeqVD 43660 e2ebindVD 43663 sb5ALTVD 43664 |
Copyright terms: Public domain | W3C validator |