Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e10.2 | ⊢ 𝜒 |
e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e10.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | vd01 42217 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
5 | 1, 3, 4 | e11 42308 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42190 |
This theorem is referenced by: e10an 42315 en3lpVD 42465 3orbi123VD 42470 sbc3orgVD 42471 exbiriVD 42474 3impexpVD 42476 3impexpbicomVD 42477 al2imVD 42482 equncomVD 42488 trsbcVD 42497 sbcssgVD 42503 csbingVD 42504 onfrALTVD 42511 csbsngVD 42513 csbxpgVD 42514 csbresgVD 42515 csbrngVD 42516 csbima12gALTVD 42517 csbunigVD 42518 csbfv12gALTVD 42519 con5VD 42520 hbimpgVD 42524 hbalgVD 42525 hbexgVD 42526 ax6e2eqVD 42527 ax6e2ndeqVD 42529 e2ebindVD 42532 sb5ALTVD 42533 |
Copyright terms: Public domain | W3C validator |