| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e10.2 | ⊢ 𝜒 |
| e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | vd01 44754 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
| 4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 5 | 1, 3, 4 | e11 44845 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44727 |
| This theorem is referenced by: e10an 44852 en3lpVD 45001 3orbi123VD 45006 sbc3orgVD 45007 exbiriVD 45010 3impexpVD 45012 3impexpbicomVD 45013 al2imVD 45018 equncomVD 45024 trsbcVD 45033 sbcssgVD 45039 csbingVD 45040 onfrALTVD 45047 csbsngVD 45049 csbxpgVD 45050 csbresgVD 45051 csbrngVD 45052 csbima12gALTVD 45053 csbunigVD 45054 csbfv12gALTVD 45055 con5VD 45056 hbimpgVD 45060 hbalgVD 45061 hbexgVD 45062 ax6e2eqVD 45063 ax6e2ndeqVD 45065 e2ebindVD 45068 sb5ALTVD 45069 |
| Copyright terms: Public domain | W3C validator |