| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e10.2 | ⊢ 𝜒 |
| e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | vd01 44591 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
| 4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 5 | 1, 3, 4 | e11 44682 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44564 |
| This theorem is referenced by: e10an 44689 en3lpVD 44838 3orbi123VD 44843 sbc3orgVD 44844 exbiriVD 44847 3impexpVD 44849 3impexpbicomVD 44850 al2imVD 44855 equncomVD 44861 trsbcVD 44870 sbcssgVD 44876 csbingVD 44877 onfrALTVD 44884 csbsngVD 44886 csbxpgVD 44887 csbresgVD 44888 csbrngVD 44889 csbima12gALTVD 44890 csbunigVD 44891 csbfv12gALTVD 44892 con5VD 44893 hbimpgVD 44897 hbalgVD 44898 hbexgVD 44899 ax6e2eqVD 44900 ax6e2ndeqVD 44902 e2ebindVD 44905 sb5ALTVD 44906 |
| Copyright terms: Public domain | W3C validator |