Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e10 Structured version   Visualization version   GIF version

Theorem e10 44688
Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e10.1 (   𝜑   ▶   𝜓   )
e10.2 𝜒
e10.3 (𝜓 → (𝜒𝜃))
Assertion
Ref Expression
e10 (   𝜑   ▶   𝜃   )

Proof of Theorem e10
StepHypRef Expression
1 e10.1 . 2 (   𝜑   ▶   𝜓   )
2 e10.2 . . 3 𝜒
32vd01 44591 . 2 (   𝜑   ▶   𝜒   )
4 e10.3 . 2 (𝜓 → (𝜒𝜃))
51, 3, 4e11 44682 1 (   𝜑   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 44563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-vd1 44564
This theorem is referenced by:  e10an  44689  en3lpVD  44838  3orbi123VD  44843  sbc3orgVD  44844  exbiriVD  44847  3impexpVD  44849  3impexpbicomVD  44850  al2imVD  44855  equncomVD  44861  trsbcVD  44870  sbcssgVD  44876  csbingVD  44877  onfrALTVD  44884  csbsngVD  44886  csbxpgVD  44887  csbresgVD  44888  csbrngVD  44889  csbima12gALTVD  44890  csbunigVD  44891  csbfv12gALTVD  44892  con5VD  44893  hbimpgVD  44897  hbalgVD  44898  hbexgVD  44899  ax6e2eqVD  44900  ax6e2ndeqVD  44902  e2ebindVD  44905  sb5ALTVD  44906
  Copyright terms: Public domain W3C validator