| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e10.2 | ⊢ 𝜒 |
| e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | vd01 44587 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
| 4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 5 | 1, 3, 4 | e11 44678 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44560 |
| This theorem is referenced by: e10an 44685 en3lpVD 44834 3orbi123VD 44839 sbc3orgVD 44840 exbiriVD 44843 3impexpVD 44845 3impexpbicomVD 44846 al2imVD 44851 equncomVD 44857 trsbcVD 44866 sbcssgVD 44872 csbingVD 44873 onfrALTVD 44880 csbsngVD 44882 csbxpgVD 44883 csbresgVD 44884 csbrngVD 44885 csbima12gALTVD 44886 csbunigVD 44887 csbfv12gALTVD 44888 con5VD 44889 hbimpgVD 44893 hbalgVD 44894 hbexgVD 44895 ax6e2eqVD 44896 ax6e2ndeqVD 44898 e2ebindVD 44901 sb5ALTVD 44902 |
| Copyright terms: Public domain | W3C validator |