Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e10.2 | ⊢ 𝜒 |
e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e10.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | vd01 42106 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
5 | 1, 3, 4 | e11 42197 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42079 |
This theorem is referenced by: e10an 42204 en3lpVD 42354 3orbi123VD 42359 sbc3orgVD 42360 exbiriVD 42363 3impexpVD 42365 3impexpbicomVD 42366 al2imVD 42371 equncomVD 42377 trsbcVD 42386 sbcssgVD 42392 csbingVD 42393 onfrALTVD 42400 csbsngVD 42402 csbxpgVD 42403 csbresgVD 42404 csbrngVD 42405 csbima12gALTVD 42406 csbunigVD 42407 csbfv12gALTVD 42408 con5VD 42409 hbimpgVD 42413 hbalgVD 42414 hbexgVD 42415 ax6e2eqVD 42416 ax6e2ndeqVD 42418 e2ebindVD 42421 sb5ALTVD 42422 |
Copyright terms: Public domain | W3C validator |