| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e10.2 | ⊢ 𝜒 |
| e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | vd01 44630 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
| 4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 5 | 1, 3, 4 | e11 44721 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44603 |
| This theorem is referenced by: e10an 44728 en3lpVD 44877 3orbi123VD 44882 sbc3orgVD 44883 exbiriVD 44886 3impexpVD 44888 3impexpbicomVD 44889 al2imVD 44894 equncomVD 44900 trsbcVD 44909 sbcssgVD 44915 csbingVD 44916 onfrALTVD 44923 csbsngVD 44925 csbxpgVD 44926 csbresgVD 44927 csbrngVD 44928 csbima12gALTVD 44929 csbunigVD 44930 csbfv12gALTVD 44931 con5VD 44932 hbimpgVD 44936 hbalgVD 44937 hbexgVD 44938 ax6e2eqVD 44939 ax6e2ndeqVD 44941 e2ebindVD 44944 sb5ALTVD 44945 |
| Copyright terms: Public domain | W3C validator |