![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e10.2 | ⊢ 𝜒 |
e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e10.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | vd01 44568 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
5 | 1, 3, 4 | e11 44659 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 44540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-vd1 44541 |
This theorem is referenced by: e10an 44666 en3lpVD 44816 3orbi123VD 44821 sbc3orgVD 44822 exbiriVD 44825 3impexpVD 44827 3impexpbicomVD 44828 al2imVD 44833 equncomVD 44839 trsbcVD 44848 sbcssgVD 44854 csbingVD 44855 onfrALTVD 44862 csbsngVD 44864 csbxpgVD 44865 csbresgVD 44866 csbrngVD 44867 csbima12gALTVD 44868 csbunigVD 44869 csbfv12gALTVD 44870 con5VD 44871 hbimpgVD 44875 hbalgVD 44876 hbexgVD 44877 ax6e2eqVD 44878 ax6e2ndeqVD 44880 e2ebindVD 44883 sb5ALTVD 44884 |
Copyright terms: Public domain | W3C validator |