![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e10.2 | ⊢ 𝜒 |
e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e10.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | vd01 43358 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
5 | 1, 3, 4 | e11 43449 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43331 |
This theorem is referenced by: e10an 43456 en3lpVD 43606 3orbi123VD 43611 sbc3orgVD 43612 exbiriVD 43615 3impexpVD 43617 3impexpbicomVD 43618 al2imVD 43623 equncomVD 43629 trsbcVD 43638 sbcssgVD 43644 csbingVD 43645 onfrALTVD 43652 csbsngVD 43654 csbxpgVD 43655 csbresgVD 43656 csbrngVD 43657 csbima12gALTVD 43658 csbunigVD 43659 csbfv12gALTVD 43660 con5VD 43661 hbimpgVD 43665 hbalgVD 43666 hbexgVD 43667 ax6e2eqVD 43668 ax6e2ndeqVD 43670 e2ebindVD 43673 sb5ALTVD 43674 |
Copyright terms: Public domain | W3C validator |