| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e10 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e10.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e10.2 | ⊢ 𝜒 |
| e10.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e10 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e10.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e10.2 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | vd01 44574 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) |
| 4 | e10.3 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 5 | 1, 3, 4 | e11 44665 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44547 |
| This theorem is referenced by: e10an 44672 en3lpVD 44822 3orbi123VD 44827 sbc3orgVD 44828 exbiriVD 44831 3impexpVD 44833 3impexpbicomVD 44834 al2imVD 44839 equncomVD 44845 trsbcVD 44854 sbcssgVD 44860 csbingVD 44861 onfrALTVD 44868 csbsngVD 44870 csbxpgVD 44871 csbresgVD 44872 csbrngVD 44873 csbima12gALTVD 44874 csbunigVD 44875 csbfv12gALTVD 44876 con5VD 44877 hbimpgVD 44881 hbalgVD 44882 hbexgVD 44883 ax6e2eqVD 44884 ax6e2ndeqVD 44886 e2ebindVD 44889 sb5ALTVD 44890 |
| Copyright terms: Public domain | W3C validator |