HomeHome Metamath Proof Explorer
Theorem List (p. 440 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 43901-44000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremvoliunsge0 43901* The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐸:ℕ⟶dom vol)    &   (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))       (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
 
Theoremvolmea 43902 The Lebeasgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑 → vol ∈ Meas)
 
Theoremmeage0 43903 If the measure of a measurable set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑀 ∈ Meas)    &   (𝜑𝐴 ∈ dom 𝑀)       (𝜑 → 0 ≤ (𝑀𝐴))
 
Theoremmeadjunre 43904 The measure of the union of two disjoint sets, with finite measure, is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑀 ∈ Meas)    &   𝑆 = dom 𝑀    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑 → (𝑀𝐴) ∈ ℝ)    &   (𝜑 → (𝑀𝐵) ∈ ℝ)       (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) + (𝑀𝐵)))
 
Theoremmeassre 43905 If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑀 ∈ Meas)    &   (𝜑𝐴 ∈ dom 𝑀)    &   (𝜑 → (𝑀𝐴) ∈ ℝ)    &   (𝜑𝐵𝐴)    &   (𝜑𝐵 ∈ dom 𝑀)       (𝜑 → (𝑀𝐵) ∈ ℝ)
 
Theoremmeale0eq0 43906 A measure that is less than or equal to 0 is 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑀 ∈ Meas)    &   (𝜑𝐴 ∈ dom 𝑀)    &   (𝜑 → (𝑀𝐴) ≤ 0)       (𝜑 → (𝑀𝐴) = 0)
 
Theoremmeadif 43907 The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑀 ∈ Meas)    &   (𝜑𝐴 ∈ dom 𝑀)    &   (𝜑 → (𝑀𝐴) ∈ ℝ)    &   (𝜑𝐵 ∈ dom 𝑀)    &   (𝜑𝐵𝐴)       (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) − (𝑀𝐵)))
 
Theoremmeaiuninclem 43908* Measures are continuous from below (bounded case): if 𝐸 is a sequence of increasing measurable sets (with uniformly bounded measure) then the measure of the union is the union of the measure. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑀 ∈ Meas)    &   (𝜑𝑁 ∈ ℤ)    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶dom 𝑀)    &   ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)    &   𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))    &   𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))       (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
 
Theoremmeaiuninc 43909* Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑀 ∈ Meas)    &   (𝜑𝑁 ∈ ℤ)    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶dom 𝑀)    &   ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)    &   𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))       (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
 
Theoremmeaiuninc2 43910* Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑀 ∈ Meas)    &   (𝜑𝑁 ∈ ℤ)    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶dom 𝑀)    &   ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))    &   (𝜑𝐵 ∈ ℝ)    &   ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ≤ 𝐵)    &   𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))       (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
 
Theoremmeaiunincf 43911* Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
𝑛𝜑    &   𝑛𝐸    &   (𝜑𝑀 ∈ Meas)    &   (𝜑𝑁 ∈ ℤ)    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶dom 𝑀)    &   ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)    &   𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))       (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
 
Theoremmeaiuninc3v 43912* Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 43909 and meaiuninc2 43910 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
(𝜑𝑀 ∈ Meas)    &   (𝜑𝑁 ∈ ℤ)    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶dom 𝑀)    &   ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))    &   𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))       (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
 
Theoremmeaiuninc3 43913* Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 43909 and meaiuninc2 43910 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
𝑛𝜑    &   𝑛𝐸    &   (𝜑𝑀 ∈ Meas)    &   (𝜑𝑁 ∈ ℤ)    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶dom 𝑀)    &   ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))    &   𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))       (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
 
Theoremmeaiininclem 43914* Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑀 ∈ Meas)    &   (𝜑𝑁 ∈ ℤ)    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶dom 𝑀)    &   ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))    &   (𝜑𝐾 ∈ (ℤ𝑁))    &   (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)    &   𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))    &   𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))    &   𝐹 = 𝑛𝑍 (𝐺𝑛)       (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
 
Theoremmeaiininc 43915* Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑛𝜑    &   (𝜑𝑀 ∈ Meas)    &   (𝜑𝑁 ∈ ℤ)    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶dom 𝑀)    &   ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))    &   (𝜑𝐾 ∈ (ℤ𝑁))    &   (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)    &   𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))       (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
 
Theoremmeaiininc2 43916* Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑛𝜑    &   𝑘𝜑    &   (𝜑𝑀 ∈ Meas)    &   (𝜑𝑁 ∈ ℤ)    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶dom 𝑀)    &   ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))    &   (𝜑 → ∃𝑘𝑍 (𝑀‘(𝐸𝑘)) ∈ ℝ)    &   𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))       (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
 
20.37.19.4  Outer measures and Caratheodory's construction

Proofs for most of the theorems in section 113 of [Fremlin1]

 
Syntaxcome 43917 Extend class notation with the class of outer measures.
class OutMeas
 
Definitiondf-ome 43918* Define the class of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))}
 
Syntaxccaragen 43919 Extend class notation with a function that takes an outer measure and generates a sigma-algebra and a measure.
class CaraGen
 
Definitiondf-caragen 43920* Define the sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)})
 
Theoremcaragenval 43921* The sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
 
Theoremisome 43922* Express the predicate "𝑂 is an outer measure." Definition 113A of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑂𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
 
Theoremcaragenel 43923* Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)       (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
 
Theoremomef 43924 An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂       (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
 
Theoremome0 43925 The outer measure of the empty set is 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)       (𝜑 → (𝑂‘∅) = 0)
 
Theoremomessle 43926 The outer measure of a set is greater than or equal to the measure of a subset, Definition 113A (ii) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝐵𝑋)    &   (𝜑𝐴𝐵)       (𝜑 → (𝑂𝐴) ≤ (𝑂𝐵))
 
Theoremomedm 43927 The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
 
Theoremcaragensplit 43928 If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   𝑋 = dom 𝑂    &   (𝜑𝐸𝑆)    &   (𝜑𝐴𝑋)       (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
 
Theoremcaragenelss 43929 An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝐴𝑆)    &   𝑋 = dom 𝑂       (𝜑𝐴𝑋)
 
Theoremcarageneld 43930* Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝐸 ∈ 𝒫 𝑋)    &   ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))       (𝜑𝐸𝑆)
 
Theoremomecl 43931 The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)       (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
 
Theoremcaragenss 43932 The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑆 = (CaraGen‘𝑂)       (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
 
Theoremomeunile 43933 The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝑌 ⊆ 𝒫 𝑋)    &   (𝜑𝑌 ≼ ω)       (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))
 
Theoremcaragen0 43934 The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)       (𝜑 → ∅ ∈ 𝑆)
 
Theoremomexrcl 43935 The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)       (𝜑 → (𝑂𝐴) ∈ ℝ*)
 
Theoremcaragenunidm 43936 The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   𝑆 = (CaraGen‘𝑂)       (𝜑𝑋𝑆)
 
Theoremcaragensspw 43937 The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   𝑆 = (CaraGen‘𝑂)       (𝜑𝑆 ⊆ 𝒫 𝑋)
 
Theoremomessre 43938 If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)    &   (𝜑 → (𝑂𝐴) ∈ ℝ)    &   (𝜑𝐵𝐴)       (𝜑 → (𝑂𝐵) ∈ ℝ)
 
Theoremcaragenuni 43939 The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)       (𝜑 𝑆 = dom 𝑂)
 
Theoremcaragenuncllem 43940 The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)       (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))
 
Theoremcaragenuncl 43941 The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)       (𝜑 → (𝐸𝐹) ∈ 𝑆)
 
Theoremcaragendifcl 43942 The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝐸𝑆)       (𝜑 → ( 𝑆𝐸) ∈ 𝑆)
 
Theoremcaragenfiiuncl 43943* The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑘𝜑    &   (𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)       (𝜑 𝑘𝐴 𝐵𝑆)
 
Theoremomeunle 43944 The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → (𝑂‘(𝐴𝐵)) ≤ ((𝑂𝐴) +𝑒 (𝑂𝐵)))
 
Theoremomeiunle 43945* The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑛𝜑    &   𝑛𝐸    &   (𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶𝒫 𝑋)       (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
 
Theoremomelesplit 43946 The outer measure of a set 𝐴 is less than or equal to the extended addition of the outer measures of the decomposition induced on 𝐴 by any 𝐸. Step (a) in the proof of Caratheodory's Method, Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)       (𝜑 → (𝑂𝐴) ≤ ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
 
Theoremomeiunltfirp 43947* If the outer measure of a countable union is not +∞, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   𝑍 = (ℤ𝑁)    &   (𝜑𝐸:𝑍⟶𝒫 𝑋)    &   (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ+)       (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
 
Theoremomeiunlempt 43948* The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑛𝜑    &   (𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   𝑍 = (ℤ𝑁)    &   ((𝜑𝑛𝑍) → 𝐸𝑋)       (𝜑 → (𝑂 𝑛𝑍 𝐸) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂𝐸))))
 
Theoremcarageniuncllem1 43949* The outer measure of 𝐴 ∩ (𝐺𝑛) is the sum of the outer measures of 𝐴 ∩ (𝐹𝑚). These are lines 7 to 10 of Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)    &   (𝜑 → (𝑂𝐴) ∈ ℝ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐸:𝑍𝑆)    &   𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))    &   𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))    &   (𝜑𝐾𝑍)       (𝜑 → Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹𝑛))) = (𝑂‘(𝐴 ∩ (𝐺𝐾))))
 
Theoremcarageniuncllem2 43950* The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)    &   (𝜑 → (𝑂𝐴) ∈ ℝ)    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐸:𝑍𝑆)    &   (𝜑𝑌 ∈ ℝ+)    &   𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))    &   𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))       (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
 
Theoremcarageniuncl 43951* The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐸:𝑍𝑆)       (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
 
Theoremcaragenunicl 43952 The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝑋𝑆)    &   (𝜑𝑋 ≼ ω)       (𝜑 𝑋𝑆)
 
Theoremcaragensal 43953 Caratheodory's method generates a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)       (𝜑𝑆 ∈ SAlg)
 
Theoremcaratheodorylem1 43954* Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝐸:𝑍𝑆)    &   (𝜑Disj 𝑛𝑍 (𝐸𝑛))    &   𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
 
Theoremcaratheodorylem2 43955* Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝐸:ℕ⟶𝑆)    &   (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))    &   𝐺 = (𝑘 ∈ ℕ ↦ 𝑛 ∈ (1...𝑘)(𝐸𝑛))       (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸𝑛)))))
 
Theoremcaratheodory 43956 Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑆 = (CaraGen‘𝑂)       (𝜑 → (𝑂𝑆) ∈ Meas)
 
Theorem0ome 43957* The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋𝑉)    &   𝑂 = (𝑥 ∈ 𝒫 𝑋 ↦ 0)       (𝜑𝑂 ∈ OutMeas)
 
Theoremisomenndlem 43958* 𝑂 is sub-additive w.r.t. countable indexed union, implies that 𝑂 is sub-additive w.r.t. countable union. Thus, the definition of Outer Measure can be given using an indexed union. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))    &   (𝜑 → (𝑂‘∅) = 0)    &   (𝜑𝑌 ⊆ 𝒫 𝑋)    &   ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))    &   (𝜑𝐵 ⊆ ℕ)    &   (𝜑𝐹:𝐵1-1-onto𝑌)    &   𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))       (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))
 
Theoremisomennd 43959* Sufficient condition to prove that 𝑂 is an outer measure. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋𝑉)    &   (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))    &   (𝜑 → (𝑂‘∅) = 0)    &   ((𝜑𝑥𝑋𝑦𝑥) → (𝑂𝑦) ≤ (𝑂𝑥))    &   ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))       (𝜑𝑂 ∈ OutMeas)
 
Theoremcaragenel2d 43960* Membership in the Caratheodory's construction. Similar to carageneld 43930, but here "less then or equal to" is used, instead of equality. This is Remark 113D of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   𝑆 = (CaraGen‘𝑂)    &   (𝜑𝐸 ∈ 𝒫 𝑋)    &   ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) ≤ (𝑂𝑎))       (𝜑𝐸𝑆)
 
Theoremomege0 43961 If the outer measure of a set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)       (𝜑 → 0 ≤ (𝑂𝐴))
 
Theoremomess0 43962 If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝐴𝑋)    &   (𝜑 → (𝑂𝐴) = 0)    &   (𝜑𝐵𝐴)       (𝜑 → (𝑂𝐵) = 0)
 
Theoremcaragencmpl 43963 A measure built with the Caratheodory's construction is complete. See Definition 112Df of [Fremlin1] p. 19. This is Exercise 113Xa of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑂 ∈ OutMeas)    &   𝑋 = dom 𝑂    &   (𝜑𝐸𝑋)    &   (𝜑 → (𝑂𝐸) = 0)    &   𝑆 = (CaraGen‘𝑂)       (𝜑𝐸𝑆)
 
20.37.19.5  Lebesgue measure on n-dimensional Real numbers

Proofs for most of the theorems in section 115 of [Fremlin1]

 
Syntaxcovoln 43964 Extend class notation with the class of Lebesgue outer measure for the space of multidimensional real numbers.
class voln*
 
Definitiondf-ovoln 43965* Define the outer measure for the space of multidimensional real numbers. The cardinality of 𝑥 is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln* = (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
 
Syntaxcvoln 43966 Extend class notation with the class of Lebesgue measure for the space of multidimensional real numbers.
class voln
 
Definitiondf-voln 43967 Define the Lebesgue measure for the space of multidimensional real numbers. The cardinality of 𝑥 is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))))
 
Theoremvonval 43968 Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)       (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
 
Theoremovnval 43969* Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)       (𝜑 → (voln*‘𝑋) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
 
Theoremelhoi 43970* Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋𝑉)       (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
 
Theoremicoresmbl 43971 A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
ran ([,) ↾ (ℝ × ℝ)) ⊆ dom vol
 
Theoremhoissre 43972* The projection of a half-open interval onto a single dimension is a subset of . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝐼:𝑋⟶(ℝ × ℝ))       ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
 
Theoremovnval2 43973* Value of the Lebesgue outer measure of a subset 𝐴 of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}       (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )))
 
Theoremvolicorecl 43974 The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
 
Theoremhoiprodcl 43975* The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
𝑘𝜑    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐼:𝑋⟶(ℝ × ℝ))       (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
 
Theoremhoicvr 43976* 𝐼 is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
𝐼 = (𝑗 ∈ ℕ ↦ (𝑥𝑋 ↦ ⟨-𝑗, 𝑗⟩))    &   (𝜑𝑋 ∈ Fin)       (𝜑 → (ℝ ↑m 𝑋) ⊆ 𝑗 ∈ ℕ X𝑖𝑋 (([,) ∘ (𝐼𝑗))‘𝑖))
 
Theoremhoissrrn 43977* A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝐼:𝑋⟶(ℝ × ℝ))       (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋))
 
Theoremovn0val 43978 The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝐴 ⊆ (ℝ ↑m ∅))       (𝜑 → ((voln*‘∅)‘𝐴) = 0)
 
Theoremovnn0val 43979* The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}       (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
 
Theoremovnval2b 43980* Value of the Lebesgue outer measure of a subset 𝐴 of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))    &   𝐿 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})       (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf((𝐿𝐴), ℝ*, < )))
 
Theoremvolicorescl 43981 The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)
 
Theoremovnprodcl 43982* The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
𝑘𝜑    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐹:ℕ⟶((ℝ × ℝ) ↑m 𝑋))    &   (𝜑𝐼 ∈ ℕ)       (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐹𝐼))‘𝑘)) ∈ (0[,)+∞))
 
Theoremhoiprodcl2 43983* The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
𝑘𝜑    &   (𝜑𝑋 ∈ Fin)    &   𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))    &   (𝜑𝐼:𝑋⟶(ℝ × ℝ))       (𝜑 → (𝐿𝐼) ∈ (0[,)+∞))
 
Theoremhoicvrrex 43984* Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑌 ⊆ (ℝ ↑m 𝑋))       (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑌 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
 
Theoremovnsupge0 43985* The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}       (𝜑𝑀 ⊆ (0[,]+∞))
 
Theoremovnlecvr 43986* Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. The statement would also be true with 𝑋 the empty set, but covers are not used for the zero-dimensional case. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))    &   (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))    &   (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))       (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
 
Theoremovnpnfelsup 43987* +∞ is an element of the set used in the definition of the Lebesgue outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}       (𝜑 → +∞ ∈ 𝑀)
 
Theoremovnsslelem 43988* The (multidimensional, nonzero-dimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}    &   𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}       (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
 
Theoremovnssle 43989 The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))       (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
 
Theoremovnlerp 43990* The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))    &   (𝜑𝐸 ∈ ℝ+)    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}       (𝜑 → ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
 
Theoremovnf 43991 The Lebesgue outer measure is a function that maps sets to nonnegative extended reals. This is step (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)       (𝜑 → (voln*‘𝑋):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞))
 
Theoremovncvrrp 43992* The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))    &   (𝜑𝐸 ∈ ℝ+)    &   𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})    &   𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))    &   𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))       (𝜑 → ∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝐸))
 
Theoremovn0lem 43993* For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))}    &   (𝜑 → inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))    &   𝐼 = (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ ⟨1, 0⟩))       (𝜑 → inf(𝑀, ℝ*, < ) = 0)
 
Theoremovn0 43994 For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)       (𝜑 → ((voln*‘𝑋)‘∅) = 0)
 
Theoremovncl 43995 The Lebesgue outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))       (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ (0[,]+∞))
 
Theoremovn02 43996 For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(voln*‘∅) = (𝑥 ∈ 𝒫 {∅} ↦ 0)
 
Theoremovnxrcl 43997 The Lebesgue outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))       (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ*)
 
Theoremovnsubaddlem1 43998* The Lebesgue outer measure is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))    &   (𝜑𝐸 ∈ ℝ+)    &   𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})    &   𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ { ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘)})    &   𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))    &   𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))    &   ((𝜑𝑛 ∈ ℕ) → (𝐼𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))    &   (𝜑𝐹:ℕ–1-1-onto→(ℕ × ℕ))    &   𝐺 = (𝑚 ∈ ℕ ↦ ((𝐼‘(1st ‘(𝐹𝑚)))‘(2nd ‘(𝐹𝑚))))       (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
 
Theoremovnsubaddlem2 43999* (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))    &   (𝜑𝐸 ∈ ℝ+)    &   𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})    &   𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})    &   𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))    &   𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))       (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
 
Theoremovnsubadd 44000* (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))       (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >