![]() |
Metamath
Proof Explorer Theorem List (p. 440 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
𝑝(t+‘𝑅)𝑐 means 𝑐 follows 𝑝 in the 𝑅-sequence. dffrege76 43901 through frege98 43923 develop this. This will be shown to be the transitive closure of the relation 𝑅. But more work needs to be done on transitive closure of relations before this is ready for Metamath. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dffrege76 43901* |
If from the two propositions that every result of an application of
the procedure 𝑅 to 𝐵 has property 𝑓 and
that property
𝑓 is hereditary in the 𝑅-sequence, it can be inferred,
whatever 𝑓 may be, that 𝐸 has property 𝑓, then
we say
𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of
[Frege1879] p. 60.
Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐵 ∈ 𝑈 & ⊢ 𝐸 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege77 43902* | If 𝑌 follows 𝑋 in the 𝑅-sequence, if property 𝐴 is hereditary in the 𝑅-sequence, and if every result of an application of the procedure 𝑅 to 𝑋 has the property 𝐴, then 𝑌 has property 𝐴. Proposition 77 of [Frege1879] p. 62. (Contributed by RP, 29-Jun-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege78 43903* | Commuted form of frege77 43902. Proposition 78 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege79 43904* | Distributed form of frege78 43903. Proposition 79 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege80 43905* | Add additional condition to both clauses of frege79 43904. Proposition 80 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴))) → (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege81 43906 | If 𝑋 has a property 𝐴 that is hereditary in the 𝑅 -sequence, and if 𝑌 follows 𝑋 in the 𝑅-sequence, then 𝑌 has property 𝐴. This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege82 43907 | Closed-form deduction based on frege81 43906. Proposition 82 of [Frege1879] p. 64. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝜑 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝜑 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege83 43908 | Apply commuted form of frege81 43906 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑆 & ⊢ 𝑌 ∈ 𝑇 & ⊢ 𝑅 ∈ 𝑈 & ⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐶 ∈ 𝑊 ⇒ ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege84 43909 | Commuted form of frege81 43906. Proposition 84 of [Frege1879] p. 65. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege85 43910* | Commuted form of frege77 43902. Proposition 85 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege86 43911* | Conclusion about element one past 𝑌 in the 𝑅-sequence. Proposition 86 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (((𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴))) → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege87 43912* | If 𝑍 is a result of an application of the procedure 𝑅 to an object 𝑌 that follows 𝑋 in the 𝑅-sequence and if every result of an application of the procedure 𝑅 to 𝑋 has a property 𝐴 that is hereditary in the 𝑅-sequence, then 𝑍 has property 𝐴. Proposition 87 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege88 43913* | Commuted form of frege87 43912. Proposition 88 of [Frege1879] p. 67. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑍 ∈ 𝐴)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege89 43914* | One direction of dffrege76 43901. Proposition 89 of [Frege1879] p. 68. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege90 43915* | Add antecedent to frege89 43914. Proposition 90 of [Frege1879] p. 68. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ ((𝜑 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (𝜑 → 𝑋(t+‘𝑅)𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege91 43916 | Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege92 43917 | Inference from frege91 43916. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege93 43918* | Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege94 43919* | Looking one past a pair related by transitive closure of a relation. Proposition 94 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑍 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ ((𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → ∀𝑓(∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑍 ∈ 𝑓)))) → (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → 𝑋(t+‘𝑅)𝑍))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege95 43920 | Looking one past a pair related by transitive closure of a relation. Proposition 95 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝐴 ⇒ ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → 𝑋(t+‘𝑅)𝑍)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege96 43921 | Every result of an application of the procedure 𝑅 to an object that follows 𝑋 in the 𝑅-sequence follows 𝑋 in the 𝑅 -sequence. Proposition 96 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝐴 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌𝑅𝑍 → 𝑋(t+‘𝑅)𝑍)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege97 43922 |
The property of following 𝑋 in the 𝑅-sequence is hereditary
in the 𝑅-sequence. Proposition 97 of [Frege1879] p. 71.
Here we introduce the image of a singleton under a relation as class which stands for the property of following 𝑋 in the 𝑅 -sequence. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ 𝑅 hereditary ((t+‘𝑅) “ {𝑋}) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege98 43923 | If 𝑌 follows 𝑋 and 𝑍 follows 𝑌 in the 𝑅-sequence then 𝑍 follows 𝑋 in the 𝑅-sequence because the transitive closure of a relation has the transitive property. Proposition 98 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 6-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑍 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
𝑝((t+‘𝑅) ∪ I )𝑐 means 𝑐 is a member of the 𝑅 -sequence beginning with 𝑝 and 𝑝 is a member of the 𝑅 -sequence ending with 𝑐. dffrege99 43924 through frege114 43939 develop this. This will be shown to be related to the transitive-reflexive closure of relation 𝑅. But more work needs to be done on transitive closure of relations before this is ready for Metamath. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dffrege99 43924 | If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege100 43925 | One direction of dffrege99 43924. Proposition 100 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege101 43926 | Lemma for frege102 43927. Proposition 101 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ ((𝑍 = 𝑋 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege102 43927 | If 𝑍 belongs to the 𝑅-sequence beginning with 𝑋, then every result of an application of the procedure 𝑅 to 𝑍 follows 𝑋 in the 𝑅-sequence. Proposition 102 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑍 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege103 43928 | Proposition 103 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege104 43929 |
Proposition 104 of [Frege1879] p. 73.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege105 43930 | Proposition 105 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege106 43931 | Whatever follows 𝑋 in the 𝑅-sequence belongs to the 𝑅 -sequence beginning with 𝑋. Proposition 106 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑋(t+‘𝑅)𝑍 → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege107 43932 | Proposition 107 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 ∈ 𝐴 ⇒ ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege108 43933 | If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍. Proposition 108 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege109 43934 | The property of belonging to the 𝑅-sequence beginning with 𝑋 is hereditary in the 𝑅-sequence. Proposition 109 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege110 43935* | Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑀 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege111 43936 | If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍 or precedes 𝑍 in the 𝑅-sequence. Proposition 111 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Revised by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍 → 𝑍((t+‘𝑅) ∪ I )𝑉))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege112 43937 | Identity implies belonging to the 𝑅-sequence beginning with self. Proposition 112 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege113 43938 | Proposition 113 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege114 43939 | If 𝑋 belongs to the 𝑅-sequence beginning with 𝑍, then 𝑍 belongs to the 𝑅-sequence beginning with 𝑋 or 𝑋 follows 𝑍 in the 𝑅-sequence. Proposition 114 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fun ◡◡𝑅 means the relationship content of procedure 𝑅 is single-valued. The double converse allows to simply apply this syntax in place of Frege's even though the original never explicitly limited discussion of propositional statements which vary on two variables to relations. dffrege115 43940 through frege133 43958 develop this and how functions relate to transitive and transitive-reflexive closures. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dffrege115 43940* | If from the circumstance that 𝑐 is a result of an application of the procedure 𝑅 to 𝑏, whatever 𝑏 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑏 is the same as 𝑐, then we say : "The procedure 𝑅 is single-valued". Definition 115 of [Frege1879] p. 77. (Contributed by RP, 7-Jul-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑐∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ Fun ◡◡𝑅) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege116 43941* | One direction of dffrege115 43940. Proposition 116 of [Frege1879] p. 77. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 ⇒ ⊢ (Fun ◡◡𝑅 → ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege117 43942* | Lemma for frege118 43943. Proposition 117 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 ⇒ ⊢ ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege118 43943* | Simplified application of one direction of dffrege115 43940. Proposition 118 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege119 43944* | Lemma for frege120 43945. Proposition 119 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege120 43945 | Simplified application of one direction of dffrege115 43940. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege121 43946 | Lemma for frege122 43947. Proposition 121 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ ((𝐴 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝐴) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝑋((t+‘𝑅) ∪ I )𝐴)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege122 43947 | If 𝑋 is a result of an application of the single-valued procedure 𝑅 to 𝑌, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑋. Proposition 122 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝑋((t+‘𝑅) ∪ I )𝐴))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege123 43948* | Lemma for frege124 43949. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege124 43949 | If 𝑋 is a result of an application of the single-valued procedure 𝑅 to 𝑌 and if 𝑀 follows 𝑌 in the 𝑅-sequence, then 𝑀 belongs to the 𝑅-sequence beginning with 𝑋. Proposition 124 of [Frege1879] p. 80. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege125 43950 | Lemma for frege126 43951. Proposition 125 of [Frege1879] p. 81. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ ((𝑋((t+‘𝑅) ∪ I )𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege126 43951 | If 𝑀 follows 𝑌 in the 𝑅-sequence and if the procedure 𝑅 is single-valued, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 126 of [Frege1879] p. 81. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege127 43952 | Communte antecedents of frege126 43951. Proposition 127 of [Frege1879] p. 82. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌(t+‘𝑅)𝑀 → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege128 43953 | Lemma for frege129 43954. Proposition 128 of [Frege1879] p. 83. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ ((𝑀((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋))) → (Fun ◡◡𝑅 → ((¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌) → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege129 43954 | If the procedure 𝑅 is single-valued and 𝑌 belongs to the 𝑅 -sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 129 of [Frege1879] p. 83. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → ((¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌) → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege130 43955* | Lemma for frege131 43956. Proposition 130 of [Frege1879] p. 84. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑀 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ ((∀𝑏((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun ◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege131 43956 | If the procedure 𝑅 is single-valued, then the property of belonging to the 𝑅-sequence beginning with 𝑀 or preceeding 𝑀 in the 𝑅-sequence is hereditary in the 𝑅-sequence. Proposition 131 of [Frege1879] p. 85. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑀 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ (Fun ◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege132 43957 | Lemma for frege133 43958. Proposition 132 of [Frege1879] p. 86. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑀 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ ((𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌)))) → (Fun ◡◡𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | frege133 43958 | If the procedure 𝑅 is single-valued and if 𝑀 and 𝑌 follow 𝑋 in the 𝑅-sequence, then 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 133 of [Frege1879] p. 86. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Seifert and Threlfall: A Textbook Of Topology (1980) which is an English translation of Lehrbuch der Topologie (1934). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Because ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐴 × 𝐵)) ≈ ((2o ↑m 𝐴) ↑m 𝐵) is an instance of the law of exponents: ((𝐶 ↑m 𝐵) ↑m 𝐴) ≈ (𝐶 ↑m (𝐴 × 𝐵)) ≈ ((𝐶 ↑m 𝐴) ↑m 𝐵) we are led to see that (𝒫 𝐵 ↑m 𝐴) ≈ 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴 ↑m 𝐵) is true for any two sets, 𝐴 and 𝐵, and thus there exist one-to-one onto relations between each of these three sets of relations. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | enrelmap 43959 | The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 43968 for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | enrelmapr 43960 | The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴 ↑m 𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | enmappw 43961 | The set of all mappings from one set to the powerset of the other is equinumerous to the set of all mappings from the second set to the powerset of the first. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ (𝒫 𝐴 ↑m 𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | enmappwid 43962 | The set of all mappings from the powerset to the powerset is equinumerous to the set of all mappings from the set to the powerset of the powerset. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ↑m 𝒫 𝐴) ≈ (𝒫 𝒫 𝐴 ↑m 𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | rfovd 43963* | Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | rfovfvd 43964* | Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, and relation 𝑅. (Contributed by RP, 25-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) & ⊢ 𝐹 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝑅) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | rfovfvfvd 43965* | Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, relation 𝑅, and left element 𝑋. (Contributed by RP, 25-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) & ⊢ 𝐹 = (𝐴𝑂𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐺 = (𝐹‘𝑅) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | rfovcnvf1od 43966* | Properties of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐹 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | rfovcnvd 43967* | Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → ◡𝐹 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | rfovf1od 43968* | The value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, is a bijection. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | rfovcnvfvd 43969* | Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝐴𝑂𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fsovd 43970* | Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fsovrfovd 43971* | The operator which gives a 1-to-1 a mapping to a subset and a reverse mapping from elements can be composed from the operator which gives a 1-to-1 mapping between relations and functions to subsets and the converse operator. (Contributed by RP, 15-May-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑢 ∈ 𝑎 ↦ {𝑣 ∈ 𝑏 ∣ 𝑢𝑟𝑣}))) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ ◡𝑠)) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵) = ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ ◡(𝐴𝑅𝐵)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fsovfvd 43972* | Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹. (Contributed by RP, 25-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = (𝐴𝑂𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → (𝐺‘𝐹) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fsovfvfvd 43973* | Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹 and element 𝑌. (Contributed by RP, 25-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = (𝐴𝑂𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝐴)) & ⊢ 𝐻 = (𝐺‘𝐹) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻‘𝑌) = {𝑥 ∈ 𝐴 ∣ 𝑌 ∈ (𝐹‘𝑥)}) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fsovfd 43974* | The operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fsovcnvlem 43975* | The 𝑂 operator, which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, gives a family of functions that include their own inverse. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = (𝐴𝑂𝐵) & ⊢ 𝐻 = (𝐵𝑂𝐴) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐺) = ( I ↾ (𝒫 𝐵 ↑m 𝐴))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fsovcnvd 43976* | The value of the converse (𝐴𝑂𝐵) is (𝐵𝑂𝐴), where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, gives a family of functions that include their own inverse. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = (𝐴𝑂𝐵) & ⊢ 𝐻 = (𝐵𝑂𝐴) ⇒ ⊢ (𝜑 → ◡𝐺 = 𝐻) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fsovcnvfvd 43977* | The value of the converse of (𝐴𝑂𝐵), where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, evaluated at function 𝐹. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = (𝐴𝑂𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐴 ↑m 𝐵)) ⇒ ⊢ (𝜑 → (◡𝐺‘𝐹) = (𝑦 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ 𝑦 ∈ (𝐹‘𝑥)})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fsovf1od 43978* | The value of (𝐴𝑂𝐵) is a bijection, where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets. (Contributed by RP, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→(𝒫 𝐴 ↑m 𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dssmapfvd 43979* | Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dssmapfv2d 43980* | Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹. (Contributed by RP, 19-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) & ⊢ 𝐺 = (𝐷‘𝐹) ⇒ ⊢ (𝜑 → 𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑠))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dssmapfv3d 43981* | Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹 and subset 𝑆. (Contributed by RP, 19-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) & ⊢ 𝐺 = (𝐷‘𝐹) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) & ⊢ 𝑇 = (𝐺‘𝑆) ⇒ ⊢ (𝜑 → 𝑇 = (𝐵 ∖ (𝐹‘(𝐵 ∖ 𝑆)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dssmapnvod 43982* | For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is its own inverse, an involution. (Contributed by RP, 20-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ◡𝐷 = 𝐷) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dssmapf1od 43983* | For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dssmap2d 43984* | For any base set 𝐵 the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐷 ∘ 𝐷) = ( I ↾ (𝒫 𝐵 ↑m 𝒫 𝐵))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
For any base set, 𝐵, an arbitrary mapping of subsets to subsets can be called a pseudoclosure (pseudointerior) function, 𝐾, with its dual of a pseudointerior (pseudoclosure), 𝐼, related by the involution in dssmapfvd 43979. As 𝐾 gains properties of the closure (interior) function of a topology on 𝐵, so does its dual gain corresponding properties of the interior (closure) function of that topology. As (𝒫 𝐵 ↑m 𝒫 𝐵) ≈ (𝒫 𝒫 𝐵 ↑m 𝐵) there is also a natural isomorphism which maps from 𝐼 to 𝑁 (and likewise for 𝐾 and 𝑀, introduced below) which identically gains the properties of the neighborhood function of a topology (modified and restricted to operate on single points). A function dual to 𝑁, which Stadler and Stadler refer to as a convergent function, is represented by 𝑀 in this section. Based on this and the early treatment of topology in Seifert and Threlfall, it seems reasonable to define a pseudotopology as defined in terms of its base set and one of these functions with theorems treating the equivalence of the other definitions and adding topological structure if enough properties hold true.
We have the following table of equivalences to axioms largely established by Kuratowski. In the formulas in this table, to reduce the width of the columns, if any of the variables 𝑥, 𝑠, or 𝑡 are used, then they are implicitly universally quantified and 𝑥 (respectively 𝑠 and 𝑡) ranges over 𝐵 (respectively 𝒫 𝐵 and 𝒫 𝐵).
Using these properties as axiomic constraints on the functions, certain collections of them give rise to named spaces.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | or3or 43985 | Decompose disjunction into three cases. (Contributed by RP, 5-Jul-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | andi3or 43986 | Distribute over triple disjunction. (Contributed by RP, 5-Jul-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒 ∨ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | uneqsn 43987 | If a union of classes is equal to a singleton then at least one class is equal to the singleton while the other may be equal to the empty set. (Contributed by RP, 5-Jul-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶}))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | brfvimex 43988 | If a binary relation holds and the relation is the value of a function, then the argument to that function is a set. (Contributed by RP, 22-May-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝑅 = (𝐹‘𝐶)) ⇒ ⊢ (𝜑 → 𝐶 ∈ V) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | brovmptimex 43989* | If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) ⇒ ⊢ (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | brovmptimex1 43990* | If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ V) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | brovmptimex2 43991* | If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) ⇒ ⊢ (𝜑 → 𝐷 ∈ V) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | brcoffn 43992 | Conditions allowing the decomposition of a binary relation. (Contributed by RP, 7-Jun-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐶 Fn 𝑌) & ⊢ (𝜑 → 𝐷:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) ⇒ ⊢ (𝜑 → (𝐴𝐷(𝐷‘𝐴) ∧ (𝐷‘𝐴)𝐶𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | brcofffn 43993 | Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐶 Fn 𝑍) & ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) & ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) ⇒ ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | brco2f1o 43994 | Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) & ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) & ⊢ (𝜑 → 𝐴(𝐶 ∘ 𝐷)𝐵) ⇒ ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ 𝐴𝐷(◡𝐶‘𝐵))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | brco3f1o 43995 | Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐶:𝑌–1-1-onto→𝑍) & ⊢ (𝜑 → 𝐷:𝑋–1-1-onto→𝑌) & ⊢ (𝜑 → 𝐸:𝑊–1-1-onto→𝑋) & ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) ⇒ ⊢ (𝜑 → ((◡𝐶‘𝐵)𝐶𝐵 ∧ (◡𝐷‘(◡𝐶‘𝐵))𝐷(◡𝐶‘𝐵) ∧ 𝐴𝐸(◡𝐷‘(◡𝐶‘𝐵)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ntrclsbex 43996 | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then the base set exists. (Contributed by RP, 21-May-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ntrclsrcomplex 43997 | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 25-Jun-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | neik0imk0p 43998 | Kuratowski's K0 axiom implies K0'. Neighborhood version. Also a proof the dual KA axiom implies KA' when considering the convergents. (Contributed by RP, 28-Jun-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥) → ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ntrk2imkb 43999* | If an interior function is contracting, the interiors of disjoint sets are disjoint. Kuratowski's K2 axiom implies KB. Interior version. (Contributed by RP, 9-Jun-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑠 ∈ 𝒫 𝐵(𝐼‘𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ntrkbimka 44000* | If the interiors of disjoint sets are disjoint, then the interior of the empty set is the empty set. (Contributed by RP, 14-Jun-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) → (𝐼‘∅) = ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |