![]() |
Metamath
Proof Explorer Theorem List (p. 440 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frege67b 43901 | Lemma for frege68b 43902. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) | ||
Theorem | frege68b 43902 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑)) | ||
Begriffsschrift Chapter II with equivalence of classes (where they are sets). | ||
Theorem | frege53c 43903 | Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝐴 / 𝑥]𝜑 → (𝐴 = 𝐵 → [𝐵 / 𝑥]𝜑)) | ||
Theorem | frege54cor1c 43904* | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.) |
⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 | ||
Theorem | frege55lem1c 43905* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) | ||
Theorem | frege55lem2c 43906* | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → [𝐴 / 𝑧]𝑧 = 𝑥) | ||
Theorem | frege55c 43907 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) | ||
Theorem | frege56c 43908* | Lemma for frege57c 43909. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑))) | ||
Theorem | frege57c 43909* | Swap order of implication in ax-frege52c 43877. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | frege58c 43910 | Principle related to sp 2180. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) | ||
Theorem | frege59c 43911 |
A kind of Aristotelian inference. Proposition 59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43802 incorrectly referenced where frege30 43821 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | frege60c 43912 | Swap antecedents of frege58c 43910. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜓 → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
Theorem | frege61c 43913 | Lemma for frege65c 43917. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (([𝐴 / 𝑥]𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | frege62c 43914 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2660 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝐴 / 𝑥]𝜓)) | ||
Theorem | frege63c 43915 | Analogue of frege63b 43897. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) | ||
Theorem | frege64c 43916 | Lemma for frege65c 43917. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (([𝐶 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐶 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
Theorem | frege65c 43917 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2660 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
Theorem | frege66c 43918 | Swap antecedents of frege65c 43917. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | frege67c 43919 | Lemma for frege68c 43920. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑))) | ||
Theorem | frege68c 43920 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) | ||
(𝑅 “ 𝐴) ⊆ 𝐴 means membership in 𝐴 is hereditary in the sequence dictated by relation 𝑅. This differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. While the above notation is modern, it is cumbersome in the case when 𝐴 is complex and to more closely follow Frege, we abbreviate it with new notation 𝑅 hereditary 𝐴. This greatly shortens the statements for frege97 43949 and frege109 43961. dffrege69 43921 through frege75 43927 develop this, but translation to Metamath is pending some decisions. While Frege does not limit discussion to sets, we may have to depart from Frege by limiting 𝑅 or 𝐴 to sets when we quantify over all hereditary relations or all classes where membership is hereditary in a sequence dictated by 𝑅. | ||
Theorem | dffrege69 43921* | If from the proposition that 𝑥 has property 𝐴 it can be inferred generally, whatever 𝑥 may be, that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then we say " Property 𝐴 is hereditary in the 𝑅-sequence. Definition 69 of [Frege1879] p. 55. (Contributed by RP, 28-Mar-2020.) |
⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) | ||
Theorem | frege70 43922* | Lemma for frege72 43924. Proposition 70 of [Frege1879] p. 58. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑉 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) | ||
Theorem | frege71 43923* | Lemma for frege72 43924. Proposition 71 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑉 ⇒ ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) | ||
Theorem | frege72 43924 | If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege73 43925 | Lemma for frege87 43939. Proposition 73 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ ((𝑅 hereditary 𝐴 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege74 43926 | If 𝑋 has a property 𝐴 that is hereditary in the 𝑅-sequence, then every result of a application of the procedure 𝑅 to 𝑋 has the property 𝐴. Proposition 74 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege75 43927* | If from the proposition that 𝑥 has property 𝐴, whatever 𝑥 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then property 𝐴 is hereditary in the 𝑅-sequence. Proposition 75 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → 𝑅 hereditary 𝐴) | ||
𝑝(t+‘𝑅)𝑐 means 𝑐 follows 𝑝 in the 𝑅-sequence. dffrege76 43928 through frege98 43950 develop this. This will be shown to be the transitive closure of the relation 𝑅. But more work needs to be done on transitive closure of relations before this is ready for Metamath. | ||
Theorem | dffrege76 43928* |
If from the two propositions that every result of an application of
the procedure 𝑅 to 𝐵 has property 𝑓 and
that property
𝑓 is hereditary in the 𝑅-sequence, it can be inferred,
whatever 𝑓 may be, that 𝐸 has property 𝑓, then
we say
𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of
[Frege1879] p. 60.
Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.) |
⊢ 𝐵 ∈ 𝑈 & ⊢ 𝐸 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) | ||
Theorem | frege77 43929* | If 𝑌 follows 𝑋 in the 𝑅-sequence, if property 𝐴 is hereditary in the 𝑅-sequence, and if every result of an application of the procedure 𝑅 to 𝑋 has the property 𝐴, then 𝑌 has property 𝐴. Proposition 77 of [Frege1879] p. 62. (Contributed by RP, 29-Jun-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴))) | ||
Theorem | frege78 43930* | Commuted form of frege77 43929. Proposition 78 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege79 43931* | Distributed form of frege78 43930. Proposition 79 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege80 43932* | Add additional condition to both clauses of frege79 43931. Proposition 80 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴))) → (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴)))) | ||
Theorem | frege81 43933 | If 𝑋 has a property 𝐴 that is hereditary in the 𝑅 -sequence, and if 𝑌 follows 𝑋 in the 𝑅-sequence, then 𝑌 has property 𝐴. This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege82 43934 | Closed-form deduction based on frege81 43933. Proposition 82 of [Frege1879] p. 64. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝜑 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝜑 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴)))) | ||
Theorem | frege83 43935 | Apply commuted form of frege81 43933 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑆 & ⊢ 𝑌 ∈ 𝑇 & ⊢ 𝑅 ∈ 𝑈 & ⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐶 ∈ 𝑊 ⇒ ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) | ||
Theorem | frege84 43936 | Commuted form of frege81 43933. Proposition 84 of [Frege1879] p. 65. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege85 43937* | Commuted form of frege77 43929. Proposition 85 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege86 43938* | Conclusion about element one past 𝑌 in the 𝑅-sequence. Proposition 86 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (((𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴))) → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴))))) | ||
Theorem | frege87 43939* | If 𝑍 is a result of an application of the procedure 𝑅 to an object 𝑌 that follows 𝑋 in the 𝑅-sequence and if every result of an application of the procedure 𝑅 to 𝑋 has a property 𝐴 that is hereditary in the 𝑅-sequence, then 𝑍 has property 𝐴. Proposition 87 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴)))) | ||
Theorem | frege88 43940* | Commuted form of frege87 43939. Proposition 88 of [Frege1879] p. 67. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑍 ∈ 𝐴)))) | ||
Theorem | frege89 43941* | One direction of dffrege76 43928. Proposition 89 of [Frege1879] p. 68. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) | ||
Theorem | frege90 43942* | Add antecedent to frege89 43941. Proposition 90 of [Frege1879] p. 68. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ ((𝜑 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (𝜑 → 𝑋(t+‘𝑅)𝑌)) | ||
Theorem | frege91 43943 | Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) | ||
Theorem | frege92 43944 | Inference from frege91 43943. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) | ||
Theorem | frege93 43945* | Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) | ||
Theorem | frege94 43946* | Looking one past a pair related by transitive closure of a relation. Proposition 94 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑍 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ ((𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → ∀𝑓(∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑍 ∈ 𝑓)))) → (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → 𝑋(t+‘𝑅)𝑍))) | ||
Theorem | frege95 43947 | Looking one past a pair related by transitive closure of a relation. Proposition 95 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝐴 ⇒ ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → 𝑋(t+‘𝑅)𝑍)) | ||
Theorem | frege96 43948 | Every result of an application of the procedure 𝑅 to an object that follows 𝑋 in the 𝑅-sequence follows 𝑋 in the 𝑅 -sequence. Proposition 96 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝐴 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌𝑅𝑍 → 𝑋(t+‘𝑅)𝑍)) | ||
Theorem | frege97 43949 |
The property of following 𝑋 in the 𝑅-sequence is hereditary
in the 𝑅-sequence. Proposition 97 of [Frege1879] p. 71.
Here we introduce the image of a singleton under a relation as class which stands for the property of following 𝑋 in the 𝑅 -sequence. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ 𝑅 hereditary ((t+‘𝑅) “ {𝑋}) | ||
Theorem | frege98 43950 | If 𝑌 follows 𝑋 and 𝑍 follows 𝑌 in the 𝑅-sequence then 𝑍 follows 𝑋 in the 𝑅-sequence because the transitive closure of a relation has the transitive property. Proposition 98 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 6-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑍 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) | ||
𝑝((t+‘𝑅) ∪ I )𝑐 means 𝑐 is a member of the 𝑅 -sequence beginning with 𝑝 and 𝑝 is a member of the 𝑅 -sequence ending with 𝑐. dffrege99 43951 through frege114 43966 develop this. This will be shown to be related to the transitive-reflexive closure of relation 𝑅. But more work needs to be done on transitive closure of relations before this is ready for Metamath. | ||
Theorem | dffrege99 43951 | If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) |
⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
Theorem | frege100 43952 | One direction of dffrege99 43951. Proposition 100 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) | ||
Theorem | frege101 43953 | Lemma for frege102 43954. Proposition 101 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ ((𝑍 = 𝑋 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)))) | ||
Theorem | frege102 43954 | If 𝑍 belongs to the 𝑅-sequence beginning with 𝑋, then every result of an application of the procedure 𝑅 to 𝑍 follows 𝑋 in the 𝑅-sequence. Proposition 102 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑍 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) | ||
Theorem | frege103 43955 | Proposition 103 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) | ||
Theorem | frege104 43956 |
Proposition 104 of [Frege1879] p. 73.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) | ||
Theorem | frege105 43957 | Proposition 105 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
Theorem | frege106 43958 | Whatever follows 𝑋 in the 𝑅-sequence belongs to the 𝑅 -sequence beginning with 𝑋. Proposition 106 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑋(t+‘𝑅)𝑍 → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
Theorem | frege107 43959 | Proposition 107 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑉 ∈ 𝐴 ⇒ ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) | ||
Theorem | frege108 43960 | If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍. Proposition 108 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉)) | ||
Theorem | frege109 43961 | The property of belonging to the 𝑅-sequence beginning with 𝑋 is hereditary in the 𝑅-sequence. Proposition 109 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) | ||
Theorem | frege110 43962* | Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑀 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) | ||
Theorem | frege111 43963 | If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍 or precedes 𝑍 in the 𝑅-sequence. Proposition 111 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Revised by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍 → 𝑍((t+‘𝑅) ∪ I )𝑉))) | ||
Theorem | frege112 43964 | Identity implies belonging to the 𝑅-sequence beginning with self. Proposition 112 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
Theorem | frege113 43965 | Proposition 113 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍))) | ||
Theorem | frege114 43966 | If 𝑋 belongs to the 𝑅-sequence beginning with 𝑍, then 𝑍 belongs to the 𝑅-sequence beginning with 𝑋 or 𝑋 follows 𝑍 in the 𝑅-sequence. Proposition 114 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) | ||
Fun ◡◡𝑅 means the relationship content of procedure 𝑅 is single-valued. The double converse allows to simply apply this syntax in place of Frege's even though the original never explicitly limited discussion of propositional statements which vary on two variables to relations. dffrege115 43967 through frege133 43985 develop this and how functions relate to transitive and transitive-reflexive closures. | ||
Theorem | dffrege115 43967* | If from the circumstance that 𝑐 is a result of an application of the procedure 𝑅 to 𝑏, whatever 𝑏 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑏 is the same as 𝑐, then we say : "The procedure 𝑅 is single-valued". Definition 115 of [Frege1879] p. 77. (Contributed by RP, 7-Jul-2020.) |
⊢ (∀𝑐∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ Fun ◡◡𝑅) | ||
Theorem | frege116 43968* | One direction of dffrege115 43967. Proposition 116 of [Frege1879] p. 77. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 ⇒ ⊢ (Fun ◡◡𝑅 → ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋))) | ||
Theorem | frege117 43969* | Lemma for frege118 43970. Proposition 117 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 ⇒ ⊢ ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋)))) | ||
Theorem | frege118 43970* | Simplified application of one direction of dffrege115 43967. Proposition 118 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) | ||
Theorem | frege119 43971* | Lemma for frege120 43972. Proposition 119 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) | ||
Theorem | frege120 43972 | Simplified application of one direction of dffrege115 43967. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) | ||
Theorem | frege121 43973 | Lemma for frege122 43974. Proposition 121 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ ((𝐴 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝐴) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝑋((t+‘𝑅) ∪ I )𝐴)))) | ||
Theorem | frege122 43974 | If 𝑋 is a result of an application of the single-valued procedure 𝑅 to 𝑌, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑋. Proposition 122 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝑋((t+‘𝑅) ∪ I )𝐴))) | ||
Theorem | frege123 43975* | Lemma for frege124 43976. Proposition 123 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)))) | ||
Theorem | frege124 43976 | If 𝑋 is a result of an application of the single-valued procedure 𝑅 to 𝑌 and if 𝑀 follows 𝑌 in the 𝑅-sequence, then 𝑀 belongs to the 𝑅-sequence beginning with 𝑋. Proposition 124 of [Frege1879] p. 80. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))) | ||
Theorem | frege125 43977 | Lemma for frege126 43978. Proposition 125 of [Frege1879] p. 81. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ ((𝑋((t+‘𝑅) ∪ I )𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋))))) | ||
Theorem | frege126 43978 | If 𝑀 follows 𝑌 in the 𝑅-sequence and if the procedure 𝑅 is single-valued, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 126 of [Frege1879] p. 81. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)))) | ||
Theorem | frege127 43979 | Communte antecedents of frege126 43978. Proposition 127 of [Frege1879] p. 82. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌(t+‘𝑅)𝑀 → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)))) | ||
Theorem | frege128 43980 | Lemma for frege129 43981. Proposition 128 of [Frege1879] p. 83. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ ((𝑀((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋))) → (Fun ◡◡𝑅 → ((¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌) → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋))))) | ||
Theorem | frege129 43981 | If the procedure 𝑅 is single-valued and 𝑌 belongs to the 𝑅 -sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 129 of [Frege1879] p. 83. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → ((¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌) → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)))) | ||
Theorem | frege130 43982* | Lemma for frege131 43983. Proposition 130 of [Frege1879] p. 84. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑀 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ ((∀𝑏((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun ◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) | ||
Theorem | frege131 43983 | If the procedure 𝑅 is single-valued, then the property of belonging to the 𝑅-sequence beginning with 𝑀 or preceeding 𝑀 in the 𝑅-sequence is hereditary in the 𝑅-sequence. Proposition 131 of [Frege1879] p. 85. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑀 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ (Fun ◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) | ||
Theorem | frege132 43984 | Lemma for frege133 43985. Proposition 132 of [Frege1879] p. 86. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑀 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ ((𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})) → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌)))) → (Fun ◡◡𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌))))) | ||
Theorem | frege133 43985 | If the procedure 𝑅 is single-valued and if 𝑀 and 𝑌 follow 𝑋 in the 𝑅-sequence, then 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 133 of [Frege1879] p. 86. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑀 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑋(t+‘𝑅)𝑀 → (𝑋(t+‘𝑅)𝑌 → (¬ 𝑌(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑌)))) | ||
See Seifert and Threlfall: A Textbook Of Topology (1980) which is an English translation of Lehrbuch der Topologie (1934). | ||
Because ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐴 × 𝐵)) ≈ ((2o ↑m 𝐴) ↑m 𝐵) is an instance of the law of exponents: ((𝐶 ↑m 𝐵) ↑m 𝐴) ≈ (𝐶 ↑m (𝐴 × 𝐵)) ≈ ((𝐶 ↑m 𝐴) ↑m 𝐵) we are led to see that (𝒫 𝐵 ↑m 𝐴) ≈ 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴 ↑m 𝐵) is true for any two sets, 𝐴 and 𝐵, and thus there exist one-to-one onto relations between each of these three sets of relations. | ||
Theorem | enrelmap 43986 | The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 43995 for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) | ||
Theorem | enrelmapr 43987 | The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. (Contributed by RP, 27-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴 ↑m 𝐵)) | ||
Theorem | enmappw 43988 | The set of all mappings from one set to the powerset of the other is equinumerous to the set of all mappings from the second set to the powerset of the first. (Contributed by RP, 27-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ (𝒫 𝐴 ↑m 𝐵)) | ||
Theorem | enmappwid 43989 | The set of all mappings from the powerset to the powerset is equinumerous to the set of all mappings from the set to the powerset of the powerset. (Contributed by RP, 27-Apr-2021.) |
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ↑m 𝒫 𝐴) ≈ (𝒫 𝒫 𝐴 ↑m 𝐴)) | ||
Theorem | rfovd 43990* | Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) | ||
Theorem | rfovfvd 43991* | Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, and relation 𝑅. (Contributed by RP, 25-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) & ⊢ 𝐹 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝑅) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) | ||
Theorem | rfovfvfvd 43992* | Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, relation 𝑅, and left element 𝑋. (Contributed by RP, 25-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) & ⊢ 𝐹 = (𝐴𝑂𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐺 = (𝐹‘𝑅) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) | ||
Theorem | rfovcnvf1od 43993* | Properties of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 27-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐹 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}))) | ||
Theorem | rfovcnvd 43994* | Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 27-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → ◡𝐹 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})) | ||
Theorem | rfovf1od 43995* | The value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, is a bijection. (Contributed by RP, 27-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴)) | ||
Theorem | rfovcnvfvd 43996* | Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝐴𝑂𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) | ||
Theorem | fsovd 43997* | Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | ||
Theorem | fsovrfovd 43998* | The operator which gives a 1-to-1 a mapping to a subset and a reverse mapping from elements can be composed from the operator which gives a 1-to-1 mapping between relations and functions to subsets and the converse operator. (Contributed by RP, 15-May-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑢 ∈ 𝑎 ↦ {𝑣 ∈ 𝑏 ∣ 𝑢𝑟𝑣}))) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ ◡𝑠)) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵) = ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ ◡(𝐴𝑅𝐵)))) | ||
Theorem | fsovfvd 43999* | Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹. (Contributed by RP, 25-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = (𝐴𝑂𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → (𝐺‘𝐹) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)})) | ||
Theorem | fsovfvfvd 44000* | Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹 and element 𝑌. (Contributed by RP, 25-Apr-2021.) |
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = (𝐴𝑂𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝐴)) & ⊢ 𝐻 = (𝐺‘𝐹) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻‘𝑌) = {𝑥 ∈ 𝐴 ∣ 𝑌 ∈ (𝐹‘𝑥)}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |