Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee202 Structured version   Visualization version   GIF version

Theorem ee202 41266
Description: e202 41265 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee202.1 (𝜑 → (𝜓𝜒))
ee202.2 𝜃
ee202.3 (𝜑 → (𝜓𝜏))
ee202.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
ee202 (𝜑 → (𝜓𝜂))

Proof of Theorem ee202
StepHypRef Expression
1 ee202.1 . 2 (𝜑 → (𝜓𝜒))
2 ee202.2 . . . 4 𝜃
32a1i 11 . . 3 (𝜓𝜃)
43a1i 11 . 2 (𝜑 → (𝜓𝜃))
5 ee202.3 . 2 (𝜑 → (𝜓𝜏))
6 ee202.4 . 2 (𝜒 → (𝜃 → (𝜏𝜂)))
71, 4, 5, 6ee222 41128 1 (𝜑 → (𝜓𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator