| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ee222 | Structured version Visualization version GIF version | ||
| Description: e222 44739 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ee222.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| ee222.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| ee222.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| ee222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| Ref | Expression |
|---|---|
| ee222 | ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee222.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | ee222.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | ee222.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | ee222.4 | . . 3 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
| 8 | 2, 4, 6, 7 | syl3c 66 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 9 | 8 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ee121 44608 ee122 44609 tratrb 44639 ee220 44741 ee202 44743 ee022 44745 ee002 44747 ee020 44749 ee200 44751 ee221 44753 ee212 44755 ee112 44758 ee211 44761 ee210 44763 ee201 44765 ee120 44767 ee021 44769 ee012 44771 ee102 44773 suctrALT2 44939 |
| Copyright terms: Public domain | W3C validator |