| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ee222 | Structured version Visualization version GIF version | ||
| Description: e222 44620 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ee222.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| ee222.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| ee222.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| ee222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| Ref | Expression |
|---|---|
| ee222 | ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee222.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | ee222.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | ee222.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | ee222.4 | . . 3 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
| 8 | 2, 4, 6, 7 | syl3c 66 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 9 | 8 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ee121 44489 ee122 44490 tratrb 44520 ee220 44622 ee202 44624 ee022 44626 ee002 44628 ee020 44630 ee200 44632 ee221 44634 ee212 44636 ee112 44639 ee211 44642 ee210 44644 ee201 44646 ee120 44648 ee021 44650 ee012 44652 ee102 44654 suctrALT2 44820 |
| Copyright terms: Public domain | W3C validator |