Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee222 Structured version   Visualization version   GIF version

Theorem ee222 42451
Description: e222 42585 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee222.1 (𝜑 → (𝜓𝜒))
ee222.2 (𝜑 → (𝜓𝜃))
ee222.3 (𝜑 → (𝜓𝜏))
ee222.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
ee222 (𝜑 → (𝜓𝜂))

Proof of Theorem ee222
StepHypRef Expression
1 ee222.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 407 . . 3 ((𝜑𝜓) → 𝜒)
3 ee222.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 407 . . 3 ((𝜑𝜓) → 𝜃)
5 ee222.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 407 . . 3 ((𝜑𝜓) → 𝜏)
7 ee222.4 . . 3 (𝜒 → (𝜃 → (𝜏𝜂)))
82, 4, 6, 7syl3c 66 . 2 ((𝜑𝜓) → 𝜂)
98ex 413 1 (𝜑 → (𝜓𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  ee121  42454  ee122  42455  tratrb  42485  ee220  42587  ee202  42589  ee022  42591  ee002  42593  ee020  42595  ee200  42597  ee221  42599  ee212  42601  ee112  42604  ee211  42607  ee210  42609  ee201  42611  ee120  42613  ee021  42615  ee012  42617  ee102  42619  suctrALT2  42786
  Copyright terms: Public domain W3C validator