| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ee222 | Structured version Visualization version GIF version | ||
| Description: e222 44626 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ee222.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| ee222.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| ee222.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| ee222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| Ref | Expression |
|---|---|
| ee222 | ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee222.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | ee222.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | ee222.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | ee222.4 | . . 3 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
| 8 | 2, 4, 6, 7 | syl3c 66 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 9 | 8 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ee121 44495 ee122 44496 tratrb 44526 ee220 44628 ee202 44630 ee022 44632 ee002 44634 ee020 44636 ee200 44638 ee221 44640 ee212 44642 ee112 44645 ee211 44648 ee210 44650 ee201 44652 ee120 44654 ee021 44656 ee012 44658 ee102 44660 suctrALT2 44826 |
| Copyright terms: Public domain | W3C validator |