Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee222 Structured version   Visualization version   GIF version

Theorem ee222 43565
Description: e222 43699 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee222.1 (𝜑 → (𝜓𝜒))
ee222.2 (𝜑 → (𝜓𝜃))
ee222.3 (𝜑 → (𝜓𝜏))
ee222.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
ee222 (𝜑 → (𝜓𝜂))

Proof of Theorem ee222
StepHypRef Expression
1 ee222.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 407 . . 3 ((𝜑𝜓) → 𝜒)
3 ee222.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 407 . . 3 ((𝜑𝜓) → 𝜃)
5 ee222.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 407 . . 3 ((𝜑𝜓) → 𝜏)
7 ee222.4 . . 3 (𝜒 → (𝜃 → (𝜏𝜂)))
82, 4, 6, 7syl3c 66 . 2 ((𝜑𝜓) → 𝜂)
98ex 413 1 (𝜑 → (𝜓𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  ee121  43568  ee122  43569  tratrb  43599  ee220  43701  ee202  43703  ee022  43705  ee002  43707  ee020  43709  ee200  43711  ee221  43713  ee212  43715  ee112  43718  ee211  43721  ee210  43723  ee201  43725  ee120  43727  ee021  43729  ee012  43731  ee102  43733  suctrALT2  43900
  Copyright terms: Public domain W3C validator