| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ee222 | Structured version Visualization version GIF version | ||
| Description: e222 44661 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ee222.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| ee222.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| ee222.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| ee222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| Ref | Expression |
|---|---|
| ee222 | ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee222.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | ee222.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | ee222.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | ee222.4 | . . 3 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
| 8 | 2, 4, 6, 7 | syl3c 66 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 9 | 8 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ee121 44530 ee122 44531 tratrb 44561 ee220 44663 ee202 44665 ee022 44667 ee002 44669 ee020 44671 ee200 44673 ee221 44675 ee212 44677 ee112 44680 ee211 44683 ee210 44685 ee201 44687 ee120 44689 ee021 44691 ee012 44693 ee102 44695 suctrALT2 44861 |
| Copyright terms: Public domain | W3C validator |