| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ee222 | Structured version Visualization version GIF version | ||
| Description: e222 44599 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ee222.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| ee222.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| ee222.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| ee222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| Ref | Expression |
|---|---|
| ee222 | ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee222.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | ee222.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | ee222.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | ee222.4 | . . 3 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
| 8 | 2, 4, 6, 7 | syl3c 66 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| 9 | 8 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ee121 44468 ee122 44469 tratrb 44499 ee220 44601 ee202 44603 ee022 44605 ee002 44607 ee020 44609 ee200 44611 ee221 44613 ee212 44615 ee112 44618 ee211 44621 ee210 44623 ee201 44625 ee120 44627 ee021 44629 ee012 44631 ee102 44633 suctrALT2 44799 |
| Copyright terms: Public domain | W3C validator |