Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee222 Structured version   Visualization version   GIF version

Theorem ee222 39666
Description: e222 39809 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee222.1 (𝜑 → (𝜓𝜒))
ee222.2 (𝜑 → (𝜓𝜃))
ee222.3 (𝜑 → (𝜓𝜏))
ee222.4 (𝜒 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
ee222 (𝜑 → (𝜓𝜂))

Proof of Theorem ee222
StepHypRef Expression
1 ee222.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 397 . . 3 ((𝜑𝜓) → 𝜒)
3 ee222.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 397 . . 3 ((𝜑𝜓) → 𝜃)
5 ee222.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 397 . . 3 ((𝜑𝜓) → 𝜏)
7 ee222.4 . . 3 (𝜒 → (𝜃 → (𝜏𝜂)))
82, 4, 6, 7syl3c 66 . 2 ((𝜑𝜓) → 𝜂)
98ex 403 1 (𝜑 → (𝜓𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387
This theorem is referenced by:  ee121  39669  ee122  39670  tratrb  39700  ee220  39811  ee202  39813  ee022  39815  ee002  39817  ee020  39819  ee200  39821  ee221  39823  ee212  39825  ee112  39828  ee211  39831  ee210  39833  ee201  39835  ee120  39837  ee021  39839  ee012  39841  ee102  39843  suctrALT2  40010
  Copyright terms: Public domain W3C validator