Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel000cT Structured version   Visualization version   GIF version

Theorem eel000cT 41333
 Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eel000cT.1 𝜑
eel000cT.2 𝜓
eel000cT.3 𝜒
eel000cT.4 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
eel000cT (⊤ → 𝜃)

Proof of Theorem eel000cT
StepHypRef Expression
1 eel000cT.3 . . 3 𝜒
2 eel000cT.2 . . . 4 𝜓
3 eel000cT.1 . . . . 5 𝜑
4 eel000cT.4 . . . . 5 ((𝜑𝜓𝜒) → 𝜃)
53, 4mp3an1 1445 . . . 4 ((𝜓𝜒) → 𝜃)
62, 5mpan 689 . . 3 (𝜒𝜃)
71, 6ax-mp 5 . 2 𝜃
87a1i 11 1 (⊤ → 𝜃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084  ⊤wtru 1539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator