Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eel132 | Structured version Visualization version GIF version |
Description: syl2an 599 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.) |
Ref | Expression |
---|---|
eel132.1 | ⊢ (𝜑 → 𝜓) |
eel132.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
eel132.3 | ⊢ ((𝜓 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
eel132 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eel132.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | eel132.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | eel132.3 | . . 3 ⊢ ((𝜓 ∧ 𝜏) → 𝜂) | |
4 | 1, 2, 3 | syl2an 599 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃)) → 𝜂) |
5 | 4 | 3impb 1117 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |