|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eel0321old | Structured version Visualization version GIF version | ||
| Description: el0321old 44737 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| eel0321old.1 | ⊢ 𝜑 | 
| eel0321old.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | 
| eel0321old.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜂) | 
| Ref | Expression | 
|---|---|
| eel0321old | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eel0321old.1 | . 2 ⊢ 𝜑 | |
| 2 | eel0321old.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | eel0321old.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜂) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: el0321old 44737 suctrALTcf 44942 | 
| Copyright terms: Public domain | W3C validator |