![]() |
Metamath
Proof Explorer Theorem List (p. 443 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cmnring 44201 | Extend class notation with the monoid ring function. |
class MndRing | ||
Definition | df-mnring 44202* | Define the monoid ring function. This takes a monoid 𝑀 and a ring 𝑅 and produces a free left module over 𝑅 with a product extending the monoid function on 𝑀. (Contributed by Rohan Ridenour, 13-May-2024.) |
⊢ MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) | ||
Theorem | mnringvald 44203* | Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 )))))〉)) | ||
Theorem | mnringnmulrd 44204 | Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
Theorem | mnringnmulrdOLD 44205 | Obsolete version of mnringnmulrd 44204 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
Theorem | mnringbased 44206 | The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
Theorem | mnringbasedOLD 44207 | Obsolete version of mnringnmulrd 44204 as of 1-Nov-2024. The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
Theorem | mnringbaserd 44208 | The base set of a monoid ring. Converse of mnringbased 44206. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) | ||
Theorem | mnringelbased 44209 | Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp 0 ))) | ||
Theorem | mnringbasefd 44210 | Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) | ||
Theorem | mnringbasefsuppd 44211 | Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 finSupp 0 ) | ||
Theorem | mnringaddgd 44212 | The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
Theorem | mnringaddgdOLD 44213 | Obsolete version of mnringaddgd 44212 as of 1-Nov-2024. The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
Theorem | mnring0gd 44214 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (0g‘𝑉) = (0g‘𝐹)) | ||
Theorem | mnring0g2d 44215 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × { 0 }) = (0g‘𝐹)) | ||
Theorem | mnringmulrd 44216* | The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 ))))) = (.r‘𝐹)) | ||
Theorem | mnringscad 44217 | The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
Theorem | mnringscadOLD 44218 | Obsolete version of mnringscad 44217 as of 1-Nov-2024. The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
Theorem | mnringvscad 44219 | The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
Theorem | mnringvscadOLD 44220 | Obsolete version of mnringvscad 44219 as of 1-Nov-2024. The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
Theorem | mnringlmodd 44221 | Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹 ∈ LMod) | ||
Theorem | mnringmulrvald 44222* | Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∙ = (.r‘𝑅) & ⊢ 𝟎 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) | ||
Theorem | mnringmulrcld 44223 | Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | ||
Theorem | gru0eld 44224 | A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → ∅ ∈ 𝐺) | ||
Theorem | grusucd 44225 | Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → suc 𝐴 ∈ 𝐺) | ||
Theorem | r1rankcld 44226 | Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) ⇒ ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) | ||
Theorem | grur1cld 44227 | Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝑅1‘𝐴) ∈ 𝐺) | ||
Theorem | grurankcld 44228 | Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) | ||
Theorem | grurankrcld 44229 | If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐺) | ||
Syntax | cscott 44230 | Extend class notation with the Scott's trick operation. |
class Scott 𝐴 | ||
Definition | df-scott 44231* | Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | ||
Theorem | scotteqd 44232 | Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) | ||
Theorem | scotteq 44233 | Closed form of scotteqd 44232. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵) | ||
Theorem | nfscott 44234 | Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥Scott 𝐴 | ||
Theorem | scottabf 44235* | Value of the Scott operation at a class abstraction. Variant of scottab 44236 with a nonfreeness hypothesis instead of a disjoint variable condition. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
Theorem | scottab 44236* | Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
Theorem | scottabes 44237* | Value of the Scott operation at a class abstraction. Variant of scottab 44236 using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
Theorem | scottss 44238 | Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Scott 𝐴 ⊆ 𝐴 | ||
Theorem | elscottab 44239* | An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) | ||
Theorem | scottex2 44240 | scottex 9922 expressed using Scott. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ Scott 𝐴 ∈ V | ||
Theorem | scotteld 44241* | The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) | ||
Theorem | scottelrankd 44242 | Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) & ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) | ||
Theorem | scottrankd 44243 | Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) | ||
Theorem | gruscottcld 44244 | If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐵 ∈ 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → Scott 𝐴 ∈ 𝐺) | ||
Syntax | ccoll 44245 | Extend class notation with the collection operation. |
class (𝐹 Coll 𝐴) | ||
Definition | df-coll 44246* | Define the collection operation. This is similar to the image set operation “, but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | ||
Theorem | dfcoll2 44247* | Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} | ||
Theorem | colleq12d 44248 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) | ||
Theorem | colleq1 44249 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴)) | ||
Theorem | colleq2 44250 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐴 = 𝐵 → (𝐹 Coll 𝐴) = (𝐹 Coll 𝐵)) | ||
Theorem | nfcoll 44251 | Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹 Coll 𝐴) | ||
Theorem | collexd 44252 | The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ V) | ||
Theorem | cpcolld 44253* | Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
Theorem | cpcoll2d 44254* | cpcolld 44253 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
Theorem | grucollcld 44255 | A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) | ||
Theorem | ismnu 44256* |
The hypothesis of this theorem defines a class M of sets that we
temporarily call "minimal universes", and which will turn out
in
grumnueq 44282 to be exactly Grothendicek universes.
Minimal universes are
sets which satisfy the predicate on 𝑦 in rr-groth 44294, except for the
𝑥
∈ 𝑦 clause.
A minimal universe is closed under subsets (mnussd 44258), powersets (mnupwd 44262), and an operation which is similar to a combination of collection and union (mnuop3d 44266), from which closure under pairing (mnuprd 44271), unions (mnuunid 44272), and function ranges (mnurnd 44278) can be deduced, from which equivalence with Grothendieck universes (grumnueq 44282) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) | ||
Theorem | mnuop123d 44257* | Operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝒫 𝐴 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | mnussd 44258* | Minimal universes are closed under subsets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | mnuss2d 44259* | mnussd 44258 with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → ∃𝑥 ∈ 𝑈 𝐴 ⊆ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑈) | ||
Theorem | mnu0eld 44260* | A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑈) | ||
Theorem | mnuop23d 44261* | Second and third operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | ||
Theorem | mnupwd 44262* | Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) | ||
Theorem | mnusnd 44263* | Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴} ∈ 𝑈) | ||
Theorem | mnuprssd 44264* | A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuprss2d 44265* | Special case of mnuprssd 44264. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuop3d 44266* | Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | ||
Theorem | mnuprdlem1 44267* | Lemma for mnuprd 44271. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑤) | ||
Theorem | mnuprdlem2 44268* | Lemma for mnuprd 44271. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑤) | ||
Theorem | mnuprdlem3 44269* | Lemma for mnuprd 44271. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ Ⅎ𝑖𝜑 ⇒ ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) | ||
Theorem | mnuprdlem4 44270* | Lemma for mnuprd 44271. General case. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuprd 44271* | Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuunid 44272* | Minimal universes are closed under union. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) | ||
Theorem | mnuund 44273* | Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) | ||
Theorem | mnutrcld 44274* | Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | mnutrd 44275* | Minimal universes are transitive. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) ⇒ ⊢ (𝜑 → Tr 𝑈) | ||
Theorem | mnurndlem1 44276* | Lemma for mnurnd 44278. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝑈) & ⊢ 𝐴 ∈ V & ⊢ (𝜑 → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝑤) | ||
Theorem | mnurndlem2 44277* | Lemma for mnurnd 44278. Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) | ||
Theorem | mnurnd 44278* | Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) | ||
Theorem | mnugrud 44279* | Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) ⇒ ⊢ (𝜑 → 𝑈 ∈ Univ) | ||
Theorem | grumnudlem 44280* | Lemma for grumnud 44281. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ 𝐹 = ({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) & ⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) & ⊢ ((ℎ ∈ (𝐹 Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
Theorem | grumnud 44281* | Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝐺 ∈ Univ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
Theorem | grumnueq 44282* | The class of Grothendieck universes is equal to the class of minimal universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ Univ = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | ||
Theorem | expandan 44283 | Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜃)) | ||
Theorem | expandexn 44284 | Expand an existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥𝜓) | ||
Theorem | expandral 44285 | Expand a restricted universal quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | expandrexn 44286 | Expand a restricted existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | expandrex 44287 | Expand a restricted existential quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜓)) | ||
Theorem | expanduniss 44288* | Expand ∪ 𝐴 ⊆ 𝐵 to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | ||
Theorem | ismnuprim 44289* | Express the predicate on 𝑈 in ismnu 44256 using only primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (∀𝑧 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ∀𝑧(𝑧 ∈ 𝑈 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑈 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))))) | ||
Theorem | rr-grothprimbi 44290* | Express "every set is contained in a Grothendieck universe" using only primitives. The right side (without the outermost universal quantifier) is proven as rr-grothprim 44295. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (∀𝑥∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀𝑥 ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))))) | ||
Theorem | inagrud 44291 | Inaccessible levels of the cumulative hierarchy are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 → 𝐼 ∈ Inacc) ⇒ ⊢ (𝜑 → (𝑅1‘𝐼) ∈ Univ) | ||
Theorem | inaex 44292* | Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) | ||
Theorem | gruex 44293* | Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 | ||
Theorem | rr-groth 44294* | An equivalent of ax-groth 10860 using only simple defined symbols. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | rr-grothprim 44295* | An equivalent of ax-groth 10860 using only primitives. This uses only 123 symbols, which is significantly less than the previous record of 163 established by grothprim 10871 (which uses some defined symbols, and requires 229 symbols if expanded to primitives). (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))))) | ||
Theorem | ismnushort 44296* | Express the predicate on 𝑈 and 𝑧 in ismnu 44256 in a shorter form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 10-Oct-2024.) |
⊢ (∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | dfuniv2 44297* | Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024.) |
⊢ Univ = {𝑦 ∣ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))} | ||
Theorem | rr-grothshortbi 44298* | Express "every set is contained in a Grothendieck universe" in a short form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 8-Oct-2024.) |
⊢ (∀𝑥∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀𝑥∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) | ||
Theorem | rr-grothshort 44299* | A shorter equivalent of ax-groth 10860 than rr-groth 44294 using a few more simple defined symbols. (Contributed by Rohan Ridenour, 8-Oct-2024.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) | ||
Theorem | nanorxor 44300 | 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |