Home Metamath Proof ExplorerTheorem List (p. 443 of 445) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-28391) Hilbert Space Explorer (28392-29914) Users' Mathboxes (29915-44438)

Theorem List for Metamath Proof Explorer - 44201-44300   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremresum2sqcl 44201 The sum of two squares of real numbers is a real number. (Contributed by AV, 7-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ)

Theoremresum2sqgt0 44202 The sum of the square of a nonzero real number and the square of another real number is greater than zero. (Contributed by AV, 7-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))       (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄)

Theoremresum2sqrp 44203 The sum of the square of a nonzero real number and the square of another real number is a positive real number. (Contributed by AV, 2-May-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))       (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ+)

Theoremresum2sqorgt0 44204 The sum of the square of two real numbers is greater than zero if at least one of the real numbers is nonzero. (Contributed by AV, 26-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄)

Theoremreorelicc 44205 Membership in and outside of a closed real interval. (Contributed by AV, 15-Feb-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶))

20.38.22.2  Real euclidean space of dimension 2

Theoremrrx2pxel 44206 The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.)
𝐼 = {1, 2}    &   𝑃 = (ℝ ↑𝑚 𝐼)       (𝑋𝑃 → (𝑋‘1) ∈ ℝ)

Theoremrrx2pyel 44207 The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.)
𝐼 = {1, 2}    &   𝑃 = (ℝ ↑𝑚 𝐼)       (𝑋𝑃 → (𝑋‘2) ∈ ℝ)

Theoremprelrrx2 44208 An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.)
𝐼 = {1, 2}    &   𝑃 = (ℝ ↑𝑚 𝐼)       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)

Theoremprelrrx2b 44209 An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2, determined by its coordinates. (Contributed by AV, 7-May-2023.)
𝐼 = {1, 2}    &   𝑃 = (ℝ ↑𝑚 𝐼)       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑍𝑃 ∧ (((𝑍‘1) = 𝐴 ∧ (𝑍‘2) = 𝐵) ∨ ((𝑍‘1) = 𝑋 ∧ (𝑍‘2) = 𝑌))) ↔ 𝑍 ∈ {{⟨1, 𝐴⟩, ⟨2, 𝐵⟩}, {⟨1, 𝑋⟩, ⟨2, 𝑌⟩}}))

Theoremrrx2pnecoorneor 44210 If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then they are different at least at one coordinate. (Contributed by AV, 26-Feb-2023.)
𝐼 = {1, 2}    &   𝑃 = (ℝ ↑𝑚 𝐼)       ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))

Theoremrrx2pnedifcoorneor 44211 If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
𝐼 = {1, 2}    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐴 = ((𝑌‘1) − (𝑋‘1))    &   𝐵 = ((𝑌‘2) − (𝑋‘2))       ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Theoremrrx2pnedifcoorneorr 44212 If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
𝐼 = {1, 2}    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐴 = ((𝑌‘1) − (𝑋‘1))    &   𝐵 = ((𝑋‘2) − (𝑌‘2))       ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Theoremrrx2xpref1o 44213* There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from {1, 2} to the real numbers). (Contributed by AV, 12-Mar-2023.)
𝑅 = (ℝ ↑𝑚 {1, 2})    &   𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})       𝐹:(ℝ × ℝ)–1-1-onto𝑅

Theoremrrx2xpreen 44214 The set of points in the two dimensional Euclidean plane and the set of ordered pairs of real numbers (the cartesian product of the real numbers) are equinumerous. (Contributed by AV, 12-Mar-2023.)
𝑅 = (ℝ ↑𝑚 {1, 2})       𝑅 ≈ (ℝ × ℝ)

Theoremrrx2plord 44215* The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point iff its first coordinate is less than the first coordinate of the other point, or the first coordinates of both points are equal and the second coordinate of the first point is less than the second coordinate of the other point: 𝑎, 𝑏⟩ ≤ ⟨𝑥, 𝑦 iff (𝑎 < 𝑥 ∨ (𝑎 = 𝑥𝑏𝑦)). (Contributed by AV, 12-Mar-2023.)
𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}       ((𝑋𝑅𝑌𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))

Theoremrrx2plord1 44216* The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point if its first coordinate is less than the first coordinate of the other point. (Contributed by AV, 12-Mar-2023.)
𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}       ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) < (𝑌‘1)) → 𝑋𝑂𝑌)

Theoremrrx2plord2 44217* The lexicographical ordering for points in the two dimensional Euclidean plane: if the first coordinates of two points are equal, a point is less than another point iff the second coordinate of the point is less than the second coordinate of the other point. (Contributed by AV, 12-Mar-2023.)
𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}    &   𝑅 = (ℝ ↑𝑚 {1, 2})       ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2)))

Theoremrrx2plordisom 44218* The set of points in the two dimensional Euclidean plane with the lexicographical ordering is isomorphic to the cartesian product of the real numbers with the lexicographical ordering implied by the ordering of the real numbers. (Contributed by AV, 12-Mar-2023.)
𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}    &   𝑅 = (ℝ ↑𝑚 {1, 2})    &   𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})    &   𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}       𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)

Theoremrrx2plordso 44219* The lexicographical ordering for points in the two dimensional Euclidean plane is a strict complete ordering. (Contributed by AV, 12-Mar-2023.)
𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}    &   𝑅 = (ℝ ↑𝑚 {1, 2})       𝑂 Or 𝑅

Theoremehl2eudisval0 44220 The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023.)
𝐸 = (𝔼hil‘2)    &   𝑋 = (ℝ ↑𝑚 {1, 2})    &   𝐷 = (dist‘𝐸)    &    0 = ({1, 2} × {0})       (𝐹𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))

Theoremehl2eudis0lt 44221 An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023.)
𝐸 = (𝔼hil‘2)    &   𝑋 = (ℝ ↑𝑚 {1, 2})    &   𝐷 = (dist‘𝐸)    &    0 = ({1, 2} × {0})       ((𝐹𝑋𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2)))

20.38.22.3  Spheres and lines in real Euclidean spaces

Syntaxcline 44222 Declare the syntax for lines in generalized real Euclidean spaces.
class LineM

Syntaxcsph 44223 Declare the syntax for spheres in generalized real Euclidean spaces.
class Sphere

Definitiondf-line 44224* Definition of lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))}))

Definitiondf-sph 44225* Definition of spheres for given centers and radii in a metric space (or more generally, in a distance space, see distspace 22614, or even in any extended structure having a base set and a distance function into the real numbers. (Contributed by AV, 14-Jan-2023.)
Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}))

Theoremlines 44226* The lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
𝐵 = (Base‘𝑊)    &   𝐿 = (LineM𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)    &    = (-g𝑆)    &    1 = (1r𝑆)       (𝑊𝑉𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))

Theoremline 44227* The line passing through the two different points 𝑋 and 𝑌 in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
𝐵 = (Base‘𝑊)    &   𝐿 = (LineM𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)    &    = (-g𝑆)    &    1 = (1r𝑆)       ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})

Theoremrrxlines 44228* Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.)
𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &    · = ( ·𝑠𝐸)    &    + = (+g𝐸)       (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))

Theoremrrxline 44229* The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.)
𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &    · = ( ·𝑠𝐸)    &    + = (+g𝐸)       ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})

Theoremrrxlinesc 44230* Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023.)
𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)       (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))

Theoremrrxlinec 44231* The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc 44230. (Contributed by AV, 13-Feb-2023.)
𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)       ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})

Theoremeenglngeehlnmlem1 44232* Lemma 1 for eenglngeehlnm 44234. (Contributed by AV, 15-Feb-2023.)
(((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚 (1...𝑁))) → ((∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))

Theoremeenglngeehlnmlem2 44233* Lemma 2 for eenglngeehlnm 44234. (Contributed by AV, 15-Feb-2023.)
(((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚 (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))

Theoremeenglngeehlnm 44234 The line definition in the Tarski structure for the Euclidean geometry (see elntg 26458) corresponds to the definition of lines passing through two different points in a left module (see rrxlines 44228). (Contributed by AV, 16-Feb-2023.)
(𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))

Theoremrrx2line 44235* The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023.) (Proof shortened by AV, 13-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)       ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})

Theoremrrx2vlinest 44236* The vertical line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)       ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})

Theoremrrx2linest 44237* The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &   𝐴 = ((𝑌‘1) − (𝑋‘1))    &   𝐵 = ((𝑌‘2) − (𝑋‘2))    &   𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))       ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})

Theoremrrx2linesl 44238* The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &   𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))       ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})

Theoremrrx2linest2 44239* The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &   𝐴 = ((𝑋‘2) − (𝑌‘2))    &   𝐵 = ((𝑌‘1) − (𝑋‘1))    &   𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))       ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})

Theoremelrrx2linest2 44240 The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &   𝐴 = ((𝑋‘2) − (𝑌‘2))    &   𝐵 = ((𝑌‘1) − (𝑋‘1))    &   𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))       ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐺 ∈ (𝑋𝐿𝑌) ↔ (𝐺𝑃 ∧ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶)))

Theoremspheres 44241* The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
𝐵 = (Base‘𝑊)    &   𝑆 = (Sphere‘𝑊)    &   𝐷 = (dist‘𝑊)       (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))

Theoremsphere 44242* A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
𝐵 = (Base‘𝑊)    &   𝑆 = (Sphere‘𝑊)    &   𝐷 = (dist‘𝑊)       ((𝑊𝑉𝑋𝐵𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝𝐵 ∣ (𝑝𝐷𝑋) = 𝑅})

Theoremrrxsphere 44243* The sphere with center 𝑀 and radius 𝑅 in a generalized real Euclidean space of finite dimension. Remark: this theorem holds also for the degenerate case 𝑅 < 0 (negative radius): in this case, (𝑀𝑆𝑅) is empty. (Contributed by AV, 5-Feb-2023.)
𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐷 = (dist‘𝐸)    &   𝑆 = (Sphere‘𝐸)       ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})

Theorem2sphere 44244* The sphere with center 𝑀 and radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &   𝐶 = {𝑝𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)}       ((𝑀𝑃𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶)

Theorem2sphere0 44245* The sphere around the origin 0 (see rrx0 23688) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐶 = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}       (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶)

Theoremline2ylem 44246* Lemma for line2y 44250. This proof is based on counterexamples for the following cases: 1. 𝐶 ≠ 0: p = (0,0) (LHS of bicondional is false, RHS is true); 2. 𝐶 = 0 ∧ 𝐵 ≠ 0: p = (1,-A/B) (LHS of bicondional is true, RHS is false); 3. 𝐴 = 𝐵 = 𝐶 = 0: p = (1,1) (LHS of bicondional is true, RHS is false). (Contributed by AV, 4-Feb-2023.)
𝐼 = {1, 2}    &   𝑃 = (ℝ ↑𝑚 𝐼)       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))

Theoremline2 44247* Example for a line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &   𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}    &   𝑋 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}    &   𝑌 = {⟨1, 1⟩, ⟨2, ((𝐶𝐴) / 𝐵)⟩}       ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐺 = (𝑋𝐿𝑌))

Theoremline2xlem 44248* Lemma for line2x 44249. This proof is based on counterexamples for the following cases: 1. 𝑀 ≠ (𝐶 / 𝐵): p = (0,C/B) (LHS of bicondional is true, RHS is false); 2. 𝐴 ≠ 0 ∧ 𝑀 = (𝐶 / 𝐵): p = (1,C/B) (LHS of bicondional is false, RHS is true). (Contributed by AV, 4-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &   𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}    &   𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}    &   𝑌 = {⟨1, 1⟩, ⟨2, 𝑀⟩}       (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) → (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))

Theoremline2x 44249* Example for a horizontal line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &   𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}    &   𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}    &   𝑌 = {⟨1, 1⟩, ⟨2, 𝑀⟩}       (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))

Theoremline2y 44250* Example for a vertical line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝐿 = (LineM𝐸)    &   𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}    &   𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}    &   𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))

Theoremitsclc0lem1 44251 Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023.)
(((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ (𝑊 ∈ ℝ ∧ 𝑊 ≠ 0)) → (((𝑆 · 𝑈) + (𝑇 · (√‘𝑉))) / 𝑊) ∈ ℝ)

Theoremitsclc0lem2 44252 Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 3-May-2023.)
(((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ (𝑊 ∈ ℝ ∧ 𝑊 ≠ 0)) → (((𝑆 · 𝑈) − (𝑇 · (√‘𝑉))) / 𝑊) ∈ ℝ)

Theoremitsclc0lem3 44253 Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)

Theoremitscnhlc0yqe 44254 Lemma for itsclc0 44266. Quadratic equation for the y-coordinate of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 6-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))

Theoremitschlc0yqe 44255 Lemma for itsclc0 44266. Quadratic equation for the y-coordinate of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))

Theoremitsclc0yqe 44256 Lemma for itsclc0 44266. Quadratic equation for the y-coordinate of the intersection points of an arbitrary line and a circle. This theorem holds even for degenerate lines (𝐴 = 𝐵 = 0). (Contributed by AV, 25-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))

Theoremitsclc0yqsollem1 44257 Lemma 1 for itsclc0yqsol 44259. (Contributed by AV, 6-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))

Theoremitsclc0yqsollem2 44258 Lemma 2 for itsclc0yqsol 44259. (Contributed by AV, 6-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘((𝑇↑2) − (4 · (𝑄 · 𝑈)))) = ((2 · (abs‘𝐴)) · (√‘𝐷)))

Theoremitsclc0yqsol 44259 Lemma for itsclc0 44266. Solutions of the quadratic equations for the y-coordinate of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 7-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))

Theoremitscnhlc0xyqsol 44260 Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 8-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))

Theoremitschlc0xyqsol1 44261 Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (𝐶 / 𝐵) ∧ (𝑋 = -((√‘𝐷) / 𝐵) ∨ 𝑋 = ((√‘𝐷) / 𝐵)))))

Theoremitschlc0xyqsol 44262 Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 8-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))

Theoremitsclc0xyqsol 44263 Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 25-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))

Theoremitsclc0xyqsolr 44264 Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) → (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)))

Theoremitsclc0xyqsolb 44265 Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))

Theoremitsclc0 44266* The intersection points of a line 𝐿 and a circle around the origin. (Contributed by AV, 25-Feb-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))

Theoremitsclc0b 44267* The intersection points of a (nondegenerate) line through two points and a circle around the origin. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))

Theoremitsclinecirc0 44268 The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = (LineM𝐸)    &   𝐴 = ((𝑌‘2) − (𝑍‘2))    &   𝐵 = ((𝑍‘1) − (𝑌‘1))    &   𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2)))       (((𝑌𝑃𝑍𝑃𝑌𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))

Theoremitsclinecirc0b 44269 The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = (LineM𝐸)    &   𝐴 = ((𝑋‘2) − (𝑌‘2))    &   𝐵 = ((𝑌‘1) − (𝑋‘1))    &   𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))

Theoremitsclinecirc0in 44270 The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space, expressed as intersection. (Contributed by AV, 7-May-2023.) (Revised by AV, 14-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐿 = (LineM𝐸)    &   𝐴 = ((𝑋‘2) − (𝑌‘2))    &   𝐵 = ((𝑌‘1) − (𝑋‘1))    &   𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})

Theoremitsclquadb 44271* Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 22-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))

Theoremitsclquadeu 44272* Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023.)
𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝑇 = -(2 · (𝐵 · 𝐶))    &   𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))       ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))

Theorem2itscplem1 44273 Lemma 1 for 2itscp 44276. (Contributed by AV, 4-Mar-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)       (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2))

Theorem2itscplem2 44274 Lemma 2 for 2itscp 44276. (Contributed by AV, 4-Mar-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))       (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2))))

Theorem2itscplem3 44275 Lemma D for 2itscp 44276. (Contributed by AV, 4-Mar-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))    &   (𝜑𝑅 ∈ ℝ)    &   𝑄 = ((𝐸↑2) + (𝐷↑2))    &   𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (𝜑𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))))

Theorem2itscp 44276 A condition for a quadratic equation with real coefficients (for the intersection points of a line with a circle) to have (exactly) two different real solutions. (Contributed by AV, 5-Mar-2023.) (Revised by AV, 16-May-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))    &   (𝜑𝑅 ∈ ℝ)    &   (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))    &   (𝜑 → (𝐵𝑌𝐴𝑋))    &   𝑄 = ((𝐸↑2) + (𝐷↑2))    &   𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2))       (𝜑 → 0 < 𝑆)

Theoremitscnhlinecirc02plem1 44277 Lemma 1 for itscnhlinecirc02p 44280. (Contributed by AV, 6-Mar-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴))    &   (𝜑𝑅 ∈ ℝ)    &   (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))    &   (𝜑𝐵𝑌)       (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Theoremitscnhlinecirc02plem2 44278 Lemma 2 for itscnhlinecirc02p 44280. (Contributed by AV, 10-Mar-2023.)
𝐷 = (𝑋𝐴)    &   𝐸 = (𝐵𝑌)    &   𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌))       ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2)))))))

Theoremitscnhlinecirc02plem3 44279 Lemma 3 for itscnhlinecirc02p 44280. (Contributed by AV, 10-Mar-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝐷 = (dist‘𝐸)       (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))

Theoremitscnhlinecirc02p 44280* Intersection of a nonhorizontal line with a circle: A nonhorizontal line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 28-Jan-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝐷 = (dist‘𝐸)    &   𝑍 = {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}       (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌))))

Theoreminlinecirc02plem 44281* Lemma for inlinecirc02p 44282. (Contributed by AV, 7-May-2023.) (Revised by AV, 15-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝑄 = ((𝐴↑2) + (𝐵↑2))    &   𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))    &   𝐴 = ((𝑋‘2) − (𝑌‘2))    &   𝐵 = ((𝑌‘1) − (𝑋‘1))    &   𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))

Theoreminlinecirc02p 44282 Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023.) (Revised by AV, 16-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝐷 = (dist‘𝐸)       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))

Theoreminlinecirc02preu 44283* Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023.)
𝐼 = {1, 2}    &   𝐸 = (ℝ^‘𝐼)    &   𝑃 = (ℝ ↑𝑚 𝐼)    &   𝑆 = (Sphere‘𝐸)    &    0 = (𝐼 × {0})    &   𝐿 = (LineM𝐸)    &   𝐷 = (dist‘𝐸)       (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑝 ∈ 𝒫 𝑃((♯‘𝑝) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌))))

20.39  Mathbox for Emmett Weisz

20.39.1  Miscellaneous Theorems

Some of these theorems are used in the series of lemmas and theorems proving the defining properties of setrecs.

Theoremnfintd 44284 Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020.)
(𝜑𝑥𝐴)       (𝜑𝑥 𝐴)

Theoremnfiund 44285 Bound-variable hypothesis builder for indexed union. (Contributed by Emmett Weisz, 6-Dec-2019.)
𝑥𝜑    &   (𝜑𝑦𝐴)    &   (𝜑𝑦𝐵)       (𝜑𝑦 𝑥𝐴 𝐵)

Theoremiunord 44286* The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. This proof is based on the proof of ssorduni 7361, but does not use it directly, since ssorduni 7361 does not work when 𝐵 is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019.)
(∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)

Theoremiunordi 44287* The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. (Contributed by Emmett Weisz, 3-Nov-2019.)
Ord 𝐵       Ord 𝑥𝐴 𝐵

Theoremspd 44288 Specialization deduction, using implicit substitution. Based on the proof of spimed 2362. (Contributed by Emmett Weisz, 17-Jan-2020.)
(𝜒 → Ⅎ𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜒 → (∀𝑥𝜑𝜓))

Theoremspcdvw 44289* A version of spcdv 3536 where 𝜓 and 𝜒 are direct substitutions of each other. This theorem is useful because it does not require 𝜑 and 𝑥 to be distinct variables. (Contributed by Emmett Weisz, 12-Apr-2020.)
(𝜑𝐴𝐵)    &   (𝑥 = 𝐴 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))

Theoremtfis2d 44290* Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020.)
(𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))    &   (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜓)))       (𝜑 → (𝑥 ∈ On → 𝜓))

Theorembnd2d 44291* Deduction form of bnd2 9173. (Contributed by Emmett Weisz, 19-Jan-2021.)
(𝜑𝐴 ∈ V)    &   (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)       (𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓))

Theoremdffun3f 44292* Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021.)
𝑥𝐴    &   𝑦𝐴    &   𝑧𝐴       (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))

20.39.2  Set Recursion

20.39.2.1  Basic Properties of Set Recursion

Symbols in this section:

All the symbols used in the definition of setrecs(𝐹) are explained in the comment of df-setrecs 44294. The class 𝑌 is explained in the comment of setrec1lem1 44297. Glossaries of symbols used in individual proofs, or used differently in different proofs, are in the comments of those proofs.

Syntaxcsetrecs 44293 Extend class notation to include a set defined by transfinite recursion.
class setrecs(𝐹)

Definitiondf-setrecs 44294* Define a class setrecs(𝐹) by transfinite recursion, where (𝐹𝑥) is the set of new elements to add to the class given the set 𝑥 of elements in the class so far. We do not need a base case, because we can start with the empty set, which is vacuously a subset of setrecs(𝐹). The goal of this definition is to construct a class fulfilling theorems setrec1 44301 and setrec2v 44306, which give a more intuitive idea of the meaning of setrecs. Unlike wrecs, setrecs is well-defined for any 𝐹 and meaningful for any function 𝐹.

For example, see theorem onsetrec 44317 for how the class On is defined recursively using the successor function.

The definition works by building subsets of the desired class and taking the union of those subsets. To find such a collection of subsets, consider an arbitrary set 𝑧, and consider the result when applying 𝐹 to any subset 𝑤𝑧. Remember that 𝐹 can be any function, and in general we are interested in functions that give outputs that are larger than their inputs, so we have no reason to expect the outputs to be within 𝑧. However, if we restrict the domain of 𝐹 to a given set 𝑦, the resulting range will be a set. Therefore, with this restricted 𝐹, it makes sense to consider sets 𝑧 that are closed under 𝐹 applied to its subsets. Now we can test whether a given set 𝑦 is recursively generated by 𝐹. If every set 𝑧 that is closed under 𝐹 contains 𝑦, that means that every member of 𝑦 must eventually be generated by 𝐹. On the other hand, if some such 𝑧 does not contain a certain element of 𝑦, then that element can be avoided even if we apply 𝐹 in every possible way to previously generated elements.

Note that such an omitted element might be eventually recursively generated by 𝐹, but not through the elements of 𝑦. In this case, 𝑦 would fail the condition in the definition, but the omitted element would still be included in some larger 𝑦. For example, if 𝐹 is the successor function, the set {∅, 2o} would fail the condition since 2o is not an element of the successor of or {∅}. Remember that we are applying 𝐹 to subsets of 𝑦, not elements of 𝑦. In fact, even the set {1o} fails the condition, since the only subset of previously generated elements is , and suc ∅ does not have 1o as an element. However, we can let 𝑦 be any ordinal, since each of its elements is generated by starting with and repeatedly applying the successor function.

A similar definition I initially used for setrecs(𝐹) was setrecs(𝐹) = ran recs((𝑔 ∈ V ↦ (𝐹 ran 𝑔))). I had initially tried and failed to find an elementary definition, and I had proven theorems analogous to setrec1 44301 and setrec2v 44306 using the old definition before I found the new one. I decided to change definitions for two reasons. First, as John Horton Conway noted in the Appendix to Part Zero of On Numbers and Games, mathematicians should not be caught up in any particular formalization, such as ZF set theory. Instead, they should work under whatever framework best suits the problem, and the formal bases used for different problems can be shown to be equivalent. Thus, Conway preferred defining surreal numbers as equivalence classes of surreal number forms, rather than sign-expansions. Although sign-expansions are easier to implement in ZF set theory, Conway argued that "formalisation within some particular axiomatic set theory is irrelevant". Furthermore, one of the most remarkable properties of the theory of surreal numbers is that it generates so much from almost nothing. Using sign-expansions as the formal definition destroys the beauty of surreal numbers, because ordinals are already built in. For this reason, I replaced the old definition of setrecs, which also relied heavily on ordinal numbers. On the other hand, both surreal numbers and the elementary definition of setrecs immediately generate the ordinal numbers from a (relatively) very simple set-theoretical basis.

Second, although it is still complicated to formalize the theory of recursively generated sets within ZF set theory, it is actually simpler and more natural to do so with set theory directly than with the theory of ordinal numbers. As Conway wrote, indexing the "birthdays" of sets is and should be unnecessary. Using an elementary definition for setrecs removes the reliance on the previously developed theory of ordinal numbers, allowing proofs to be simpler and more direct.

Formalizing surreal numbers within Metamath is probably still not in the spirit of Conway. He said that "attempts to force arbitrary theories into a single formal straitjacket... produce unnecessarily cumbrous and inelegant contortions." Nevertheless, Metamath has proven to be much more versatile than it seems at first, and I think the theory of surreal numbers can be natural while fitting well into the Metamath framework.

The difficulty in writing a definition in Metamath for setrecs(𝐹) is that the necessary properties to prove are self-referential (see setrec1 44301 and setrec2v 44306), so we cannot simply write the properties we want inside a class abstraction as with most definitions. As noted in the comment of df-rdg 7903, this is not actually a requirement of the Metamath language, but we would like to be able to eliminate all definitions by direct mechanical substitution.

We cannot define setrecs using a class abstraction directly, because nothing about its individual elements tells us whether they are in the set. We need to know about previous elements first. One way of getting around this problem without indexing is by defining setrecs(𝐹) as a union or intersection of suitable sets. Thus, instead of using a class abstraction for the elements of setrecs(𝐹), which seems to be impossible, we can use a class abstraction for supersets or subsets of setrecs(𝐹), which "know" about multiple individual elements at a time.

Note that we cannot define setrecs(𝐹) as an intersection of sets, because in general it is a proper class, so any supersets would also be proper classes. However, a proper class can be a union of sets, as long as the collection of such sets is a proper class. Therefore, it is feasible to define setrecs(𝐹) as a union of a class abstraction.

If setrecs(𝐹) = 𝐴, the elements of A must be subsets of setrecs(𝐹) which together include everything recursively generated by 𝐹. We can do this by letting 𝐴 be the class of sets 𝑥 whose elements are all recursively generated by 𝐹.

One necessary condition is that each element of a given 𝑥𝐴 must be generated by 𝐹 when applied to a previous element 𝑦𝐴. In symbols, 𝑥𝐴𝑦𝐴(𝑦𝑥𝑥 ⊆ (𝐹𝑦))}. However, this is not sufficient. All fixed points 𝑥 of 𝐹 will satisfy this condition whether they should be in setrecs(𝐹) or not. If we replace the subset relation with the proper subset relation, 𝑥 cannot be the empty set, even though the empty set should be in 𝐴. Therefore this condition cannot be used in the definition, even if we can find a way to avoid making it circular.

A better strategy is to find a necessary and sufficient condition for all the elements of a set 𝑦𝐴 to be generated by 𝐹 when applied only to sets of previously generated elements within 𝑦. For example, taking 𝐹 to be the successor function, we can let 𝐴 = On rather than 𝒫 On, and we will still have 𝐴 = On as required. This gets rid of the circularity of the definition, since we should have a condition to test whether a given set 𝑦 is in 𝐴 without knowing about any of the other elements of 𝐴.

The definition I ended up using accomplishes this using induction: 𝐴 is defined as the class of sets 𝑦 for which a sort of induction on the elements of 𝑦 holds. However, when creating a definition for setrecs that did not rely on ordinal numbers, I tried at first to write a definition using the well-founded relation predicate, Fr. I thought that this would be simple to do once I found a suitable definition using induction, just as the least- element principle is equivalent to induction on the positive integers. If we let 𝑅 = {⟨𝑎, 𝑏⟩ ∣ (𝐹𝑎) ⊆ 𝑏}, then (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥¬ (𝐹𝑧) ⊆ 𝑦)).

On 22-Jul-2020 I came up with the following definition (Version 1) phrased in terms of induction: {𝑦 ∣ ∀𝑧 (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ∈ 𝑧)) → 𝑦𝑧)}

In Aug-2020 I came up with an equivalent definition with the goal of phrasing it in terms of the relation Fr. It is the contrapositive of the previous one with 𝑧 replaced by its complement. {𝑦 ∣ ∀𝑧 (𝑦𝑧 → ∃𝑤(𝑤𝑦 ∧ (𝐹𝑤) ∈ 𝑧 ∧ ¬ 𝑤𝑧))}

These definitions didn't work because the induction didn't "get off the ground." If 𝑧 does not contain the empty set, the condition (∀𝑤...𝑦𝑧 fails, so 𝑦 = ∅ doesn't get included in 𝐴 even though it should. This could be fixed by adding the base case as a separate requirement, but the subtler problem would remain that rather than a set of "acceptable" sets, what we really need is a collection 𝑧 of all individuals that have been generated so far. So one approach is to replace every occurrence of 𝑧 with 𝑧, making 𝑧 a set of individuals rather than a family of sets. That solves this problem, but it complicates the foundedness version of the definition, which looked cleaner in Version 1.

There was another problem with Version 1. If we let 𝐹 be the power set function, then the induction in the inductive version works for 𝑧 being the class of transitive sets, restricted to subsets of 𝑦. Therefore, 𝑦 must be transitive by definition of 𝑧. This doesn't affect the union of all such 𝑦, but it may or may not be desirable. The problem is that 𝐹 is only applied to transitive sets, because of the strong requirement 𝑤𝑧, so the definition requires the additional constraint (𝑎𝑏 → (𝐹𝑎) ⊆ (𝐹𝑏)) in order to work. This issue can also be avoided by replacing 𝑧 with 𝑧. The induction version of the result is used in the final definition.

Version 2: (18-Aug-2020) Induction: {𝑦 ∣ ∀𝑧 (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} Foundedness: {𝑦 ∣ ∀𝑧(𝑦𝑧 ≠ ∅ → 𝑤(𝑤𝑦𝑤𝑧 = ∅ ∧ (𝐹𝑤) ∩ 𝑧 ≠ ∅))}

In the induction version, not only does 𝑧 include all the elements of 𝑦, but it must include the elements of (𝐹𝑤) for 𝑤 ⊆ (𝑦𝑧) even if those elements of (𝐹𝑤) are not in 𝑦. We shouldn't care about any of the elements of 𝑧 outside 𝑦, but this detail doesn't affect the correctness of the definition. If we replaced (𝐹𝑤) in the definition by ((𝐹𝑤) ∩ 𝑦), we would get the same class for setrecs(𝐹). Suppose we could find a 𝑧 for which the condition fails for a given 𝑦 under the changed definition. Then the antecedent would be true, but 𝑦𝑧 would be false. We could then simply add all elements of (𝐹𝑤) outside of 𝑦 for any 𝑤𝑦, which we can do because all the classes involved are sets. This is not trivial and requires the axioms of union, power set, and replacement. However, the expanded 𝑧 fails the condition under the Metamath definition. The other direction is easier. If a certain 𝑧 fails the Metamath definition, then all (𝐹𝑤) ⊆ 𝑧 for 𝑤 ⊆ (𝑦𝑧), and in particular ((𝐹𝑤) ∩ 𝑦) ⊆ 𝑧.

The foundedness version is starting to look more like ax-reg 8907! We want to take advantage of the preexisting relation Fr, which seems closely related to our foundedness definition. Since we only care about the elements of 𝑧 which are subsets of 𝑦, we can restrict 𝑧 to 𝑦 in the foundedness definition. Furthermore, instead of quantifying over 𝑤, quantify over the elements 𝑣𝑧 overlapping with 𝑤. Versions 3, 4, and 5 are all equivalent to Version 2.

Version 3 - Foundedness (5-Sep-2020): {𝑦 ∣ ∀𝑧((𝑧𝑦𝑧 ≠ ∅) → ∃𝑣𝑧𝑤(𝑤𝑦𝑤𝑧 = ∅ ∧ 𝑣 ∈ (𝐹𝑤)))}

Now, if we replace (𝐹𝑤) by ((𝐹𝑤) ∩ 𝑦), we do not change the definition. We already know that 𝑣𝑦 since 𝑣𝑧 and 𝑧𝑦. All we need to show in order to prove that this change leads to an equivalent definition is to find

To make our definition look exactly like df-fr 5407, we add another variable 𝑢 representing the nonexistent element of 𝑤 in 𝑧.

Version 4 - Foundedness (6-Sep-2020): {𝑦 ∣ ∀𝑧((𝑧𝑦𝑧 ≠ ∅) → 𝑣𝑧𝑤𝑢𝑧(𝑤𝑦 ∧ ¬ 𝑢𝑤𝑣 ∈ (𝐹𝑤))

This is so close to df-fr 5407; the only change needed is to switch 𝑤 with 𝑢𝑧. Unfortunately, I couldn't find any way to switch the quantifiers without interfering with the definition. Maybe there is a definition equivalent to this one that uses Fr, but I couldn't find one. Yet, we can still find a remarkable similarity between Foundedness Version 2 and ax-reg 8907. Rather than a disjoint element of 𝑧, there's a disjoint coverer of an element of 𝑧.

Finally, here's a different dead end I followed:

To clean up our foundedness definition, we keep 𝑧 as a family of sets 𝑦 but allow 𝑤 to be any subset of 𝑧 in the induction. With this stronger induction, we can also allow for the stronger requirement 𝒫 𝑦𝑧 rather than only 𝑦𝑧. This will help improve the foundedness version.

Version 1.1 (28-Aug-2020) Induction: {𝑦 ∣ ∀𝑧(∀𝑤 (𝑤𝑦 → (𝑤 𝑧 → (𝐹𝑤) ∈ 𝑧)) → 𝒫 𝑦𝑧)} Foundedness: {𝑦 ∣ ∀𝑧(∃𝑎(𝑎𝑦𝑎𝑧) → ∃𝑤(𝑤𝑦𝑤 𝑧 = ∅ ∧ (𝐹𝑤) ∈ 𝑧))}

( Edit (Aug 31) - this isn't true! Nothing forces the subset of an element of 𝑧 to be in 𝑧. Version 2 does not have this issue. )

Similarly, we could allow 𝑤 to be any subset of any element of 𝑧 rather than any subset of 𝑧. I think this has the same problem.

We want to take advantage of the preexisting relation Fr, which seems closely related to our foundedness definition. Since we only care about the elements of 𝑧 which are subsets of 𝑦, we can restrict 𝑧 to 𝒫 𝑦 in the foundedness definition:

Version 1.2 (31-Aug-2020) Foundedness: {𝑦 ∣ ∀𝑧((𝑧 ⊆ 𝒫 𝑦𝑧 ≠ ∅) → ∃𝑤(𝑤 ∈ 𝒫 𝑦𝑤 𝑧 = ∅ ∧ (𝐹𝑤) ∈ 𝑧))}

Now this looks more like df-fr 5407! The last step necessary to be able to use Fr directly in our definition is to replace (𝐹𝑤) with its own setvar variable, corresponding to 𝑦 in df-fr 5407.

This definition is incorrect, though, since there's nothing forcing the subset of an element of 𝑧 to be in 𝑧.

Version 1.3 (31-Aug-2020) Induction: {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤 𝑧 → (𝑤𝑧 ∧ (𝐹𝑤) ∈ 𝑧))) → 𝒫 𝑦𝑧)} Foundedness: {𝑦 ∣ ∀𝑧((𝑧 ⊆ 𝒫 𝑦𝑧 ≠ ∅) → ∃𝑤(𝑤 ∈ 𝒫 𝑦 𝑤 𝑧 = ∅ ∧ (𝑤𝑧 ∨ (𝐹𝑤) ∈ 𝑧)))}

𝑧 must contain the supersets of each of its elements in the foundedness version, and we can't make any restrictions on 𝑧 or 𝐹, so this doesn't work.

Let's try letting R be the covering relation 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑏 ∈ (𝐹𝑎)} to solve the transitivity issue (i.e. that if 𝐹 is the power set relation, 𝐴 consists only of transitive sets). The set (𝐹𝑤) corresponds to the variable 𝑦 in df-fr 5407. Thus, in our case, df-fr 5407 is equivalent to (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤((𝐹𝑤) ∈ 𝑧 ∧ ¬ ∃𝑣𝑧𝑣𝑅(𝐹𝑤))). Substituting our relation 𝑅 gives (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → 𝑤((𝐹𝑤) ∈ 𝑧 ∧ ¬ ∃𝑣𝑧(𝐹𝑤) ∈ (𝐹𝑣)))

This doesn't work for non-injective 𝐹 because we need all 𝑧 to be straddlers, but we don't necessarily need all-straddlers; loops within z are fine for non-injective F.

Consider the foundedness form of Version 1. We want to show ¬ 𝑤𝑧 ↔ ∀𝑣𝑧¬ 𝑣𝑅(𝐹𝑤) so we can replace one with the other. Negate both sides: 𝑤𝑧 ↔ ∃𝑣𝑧𝑣𝑅(𝐹𝑤)

If 𝐹 is injective, then we should be able to pick a suitable R, being careful about the above problem for some F (for example z = transitivity) when changing the antecedent y e. z' to z =/= (/). If we're clever, we can get rid of the injectivity requirement. The forward direction of the above equivalence always holds, but the key is that although the backwards direction doesn't hold in general, we can always find some z' where it doesn't work for 𝑤 itself. If there exists a z' where the version with the w condition fails, then there exists a z' where the version with the v condition also fails. However, Version 1 is not a correct definition, so this doesn't work either. (Contributed by Emmett Weisz, 18-Aug-2020.) (New usage is discouraged.)

setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}

Theoremsetrecseq 44295 Equality theorem for set recursion. (Contributed by Emmett Weisz, 17-Feb-2021.)
(𝐹 = 𝐺 → setrecs(𝐹) = setrecs(𝐺))

Theoremnfsetrecs 44296 Bound-variable hypothesis builder for setrecs. (Contributed by Emmett Weisz, 21-Oct-2021.)
𝑥𝐹       𝑥setrecs(𝐹)

Theoremsetrec1lem1 44297* Lemma for setrec1 44301. This is a utility theorem showing the equivalence of the statement 𝑋𝑌 and its expanded form. The proof uses elabg 3605 and equivalence theorems.

Variable 𝑌 is the class of sets 𝑦 that are recursively generated by the function 𝐹. In other words, 𝑦𝑌 iff by starting with the empty set and repeatedly applying 𝐹 to subsets 𝑤 of our set, we will eventually generate all the elements of 𝑌. In this theorem, 𝑋 is any element of 𝑌, and 𝑉 is any class. (Contributed by Emmett Weisz, 16-Oct-2020.) (New usage is discouraged.)

𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}    &   (𝜑𝑋𝑉)       (𝜑 → (𝑋𝑌 ↔ ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))

Theoremsetrec1lem2 44298* Lemma for setrec1 44301. If a family of sets are all recursively generated by 𝐹, so is their union. In this theorem, 𝑋 is a family of sets which are all elements of 𝑌, and 𝑉 is any class. Use dfss3 3882, equivalence and equality theorems, and unissb at the end. Sandwich with applications of setrec1lem1. (Contributed by Emmett Weisz, 24-Jan-2021.) (New usage is discouraged.)
𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}    &   (𝜑𝑋𝑉)    &   (𝜑𝑋𝑌)       (𝜑 𝑋𝑌)

Theoremsetrec1lem3 44299* Lemma for setrec1 44301. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 44298. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴𝑌. I don't know if proving this fact directly using setrec1lem1 44297 would be any easier than the current proof using setrec1lem2 44298, and it would only slightly simplify the proof of setrec1 44301. Other than the use of bnd2d 44291, this is a purely technical theorem for rearranging notation from that of setrec1lem2 44298 to that of setrec1 44301. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.)
𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}    &   (𝜑𝐴 ∈ V)    &   (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌))       (𝜑 → ∃𝑥(𝐴𝑥𝑥𝑌))

Theoremsetrec1lem4 44300* Lemma for setrec1 44301. If 𝑋 is recursively generated by 𝐹, then so is 𝑋 ∪ (𝐹𝐴).

In the proof of setrec1 44301, the following is substituted for this theorem's 𝜑: (𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤 (𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) Therefore, we cannot declare 𝑧 to be a distinct variable from 𝜑, since we need it to appear as a bound variable in 𝜑. This theorem can be proven without the hypothesis 𝑧𝜑, but the proof would be harder to read because theorems in deduction form would be interrupted by theorems like eximi 1816, making the antecedent of each line something more complicated than 𝜑. The proof of setrec1lem2 44298 could similarly be made easier to read by adding the hypothesis 𝑧𝜑, but I had already finished the proof and decided to leave it as is. (Contributed by Emmett Weisz, 26-Nov-2020.) (New usage is discouraged.)

𝑧𝜑    &   𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}    &   (𝜑𝐴 ∈ V)    &   (𝜑𝐴𝑋)    &   (𝜑𝑋𝑌)       (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ 𝑌)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44438
 Copyright terms: Public domain < Previous  Next >