![]() |
Metamath
Proof Explorer Theorem List (p. 443 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30640) |
![]() (30641-32163) |
![]() (32164-48040) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnfex 44201 | The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ ((π½ β Top β§ πΎ β Top) β (π½ Cn πΎ) β V) | ||
Theorem | fnchoice 44202* | For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ (π΄ β Fin β βπ(π Fn π΄ β§ βπ₯ β π΄ (π₯ β β β (πβπ₯) β π₯))) | ||
Theorem | refsumcn 44203* | A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 24710 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ β²π₯π & β’ πΎ = (topGenβran (,)) & β’ (π β π½ β (TopOnβπ)) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β (π₯ β π β¦ π΅) β (π½ Cn πΎ)) β β’ (π β (π₯ β π β¦ Ξ£π β π΄ π΅) β (π½ Cn πΎ)) | ||
Theorem | rfcnpre2 44204 | If πΉ is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real π΅, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ β²π₯π΅ & β’ β²π₯πΉ & β’ β²π₯π & β’ πΎ = (topGenβran (,)) & β’ π = βͺ π½ & β’ π΄ = {π₯ β π β£ (πΉβπ₯) < π΅} & β’ (π β π΅ β β*) & β’ (π β πΉ β (π½ Cn πΎ)) β β’ (π β π΄ β π½) | ||
Theorem | cncmpmax 44205* | When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ π = βͺ π½ & β’ πΎ = (topGenβran (,)) & β’ (π β π½ β Comp) & β’ (π β πΉ β (π½ Cn πΎ)) & β’ (π β π β β ) β β’ (π β (sup(ran πΉ, β, < ) β ran πΉ β§ sup(ran πΉ, β, < ) β β β§ βπ‘ β π (πΉβπ‘) β€ sup(ran πΉ, β, < ))) | ||
Theorem | rfcnpre3 44206* | If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ β²π‘πΉ & β’ πΎ = (topGenβran (,)) & β’ π = βͺ π½ & β’ π΄ = {π‘ β π β£ π΅ β€ (πΉβπ‘)} & β’ (π β π΅ β β) & β’ (π β πΉ β (π½ Cn πΎ)) β β’ (π β π΄ β (Clsdβπ½)) | ||
Theorem | rfcnpre4 44207* | If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ β²π‘πΉ & β’ πΎ = (topGenβran (,)) & β’ π = βͺ π½ & β’ π΄ = {π‘ β π β£ (πΉβπ‘) β€ π΅} & β’ (π β π΅ β β) & β’ (π β πΉ β (π½ Cn πΎ)) β β’ (π β π΄ β (Clsdβπ½)) | ||
Theorem | sumpair 44208* | Sum of two distinct complex values. The class expression for π΄ and π΅ normally contain free variable π to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ (π β β²ππ·) & β’ (π β β²ππΈ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π· β β) & β’ (π β πΈ β β) & β’ (π β π΄ β π΅) & β’ ((π β§ π = π΄) β πΆ = π·) & β’ ((π β§ π = π΅) β πΆ = πΈ) β β’ (π β Ξ£π β {π΄, π΅}πΆ = (π· + πΈ)) | ||
Theorem | rfcnnnub 44209* | Given a real continuous function πΉ defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ β²π‘πΉ & β’ β²π‘π & β’ πΎ = (topGenβran (,)) & β’ (π β π½ β Comp) & β’ π = βͺ π½ & β’ (π β π β β ) & β’ πΆ = (π½ Cn πΎ) & β’ (π β πΉ β πΆ) β β’ (π β βπ β β βπ‘ β π (πΉβπ‘) < π) | ||
Theorem | refsum2cnlem1 44210* | This is the core Lemma for refsum2cn 44211: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ β²π₯π΄ & β’ β²π₯πΉ & β’ β²π₯πΊ & β’ β²π₯π & β’ π΄ = (π β {1, 2} β¦ if(π = 1, πΉ, πΊ)) & β’ πΎ = (topGenβran (,)) & β’ (π β π½ β (TopOnβπ)) & β’ (π β πΉ β (π½ Cn πΎ)) & β’ (π β πΊ β (π½ Cn πΎ)) β β’ (π β (π₯ β π β¦ ((πΉβπ₯) + (πΊβπ₯))) β (π½ Cn πΎ)) | ||
Theorem | refsum2cn 44211* | The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
β’ β²π₯πΉ & β’ β²π₯πΊ & β’ β²π₯π & β’ πΎ = (topGenβran (,)) & β’ (π β π½ β (TopOnβπ)) & β’ (π β πΉ β (π½ Cn πΎ)) & β’ (π β πΊ β (π½ Cn πΎ)) β β’ (π β (π₯ β π β¦ ((πΉβπ₯) + (πΊβπ₯))) β (π½ Cn πΎ)) | ||
Theorem | adantlllr 44212 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ ((((π β§ π) β§ π) β§ π) β π) β β’ (((((π β§ π) β§ π) β§ π) β§ π) β π) | ||
Theorem | 3adantlr3 44213 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (((π β§ (π β§ π)) β§ π) β π) β β’ (((π β§ (π β§ π β§ π)) β§ π) β π) | ||
Theorem | 3adantll2 44214 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ ((((π β§ π) β§ π) β§ π) β π) β β’ ((((π β§ π β§ π) β§ π) β§ π) β π) | ||
Theorem | 3adantll3 44215 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ ((((π β§ π) β§ π) β§ π) β π) β β’ ((((π β§ π β§ π) β§ π) β§ π) β π) | ||
Theorem | ssnel 44216 | If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ ((π΄ β π΅ β§ Β¬ πΆ β π΅) β Β¬ πΆ β π΄) | ||
Theorem | sncldre 44217 | A singleton is closed w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π΄ β β β {π΄} β (Clsdβ(topGenβran (,)))) | ||
Theorem | n0p 44218 | A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
β’ ((π β (Polyββ€) β§ π β β0 β§ ((coeffβπ)βπ) β 0) β π β 0π) | ||
Theorem | pm2.65ni 44219 | Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
β’ (Β¬ π β π) & β’ (Β¬ π β Β¬ π) β β’ π | ||
Theorem | pwssfi 44220 | Every element of the power set of π΄ is finite if and only if π΄ is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π΄ β π β (π΄ β Fin β π« π΄ β Fin)) | ||
Theorem | iuneq2df 44221 | Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²π₯π & β’ ((π β§ π₯ β π΄) β π΅ = πΆ) β β’ (π β βͺ π₯ β π΄ π΅ = βͺ π₯ β π΄ πΆ) | ||
Theorem | nnfoctb 44222* | There exists a mapping from β onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ ((π΄ βΌ Ο β§ π΄ β β ) β βπ π:ββontoβπ΄) | ||
Theorem | ssinss1d 44223 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π΄ β πΆ) β β’ (π β (π΄ β© π΅) β πΆ) | ||
Theorem | elpwinss 44224 | An element of the powerset of π΅ intersected with anything, is a subset of π΅. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π΄ β (π« π΅ β© πΆ) β π΄ β π΅) | ||
Theorem | unidmex 44225 | If πΉ is a set, then βͺ dom πΉ is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β πΉ β π) & β’ π = βͺ dom πΉ β β’ (π β π β V) | ||
Theorem | ndisj2 44226* | A non-disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π₯ = π¦ β π΅ = πΆ) β β’ (Β¬ Disj π₯ β π΄ π΅ β βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β§ (π΅ β© πΆ) β β )) | ||
Theorem | zenom 44227 | The set of integer numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β€ β Ο | ||
Theorem | uzwo4 44228* | Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²ππ & β’ (π = π β (π β π)) β β’ ((π β (β€β₯βπ) β§ βπ β π π) β βπ β π (π β§ βπ β π (π < π β Β¬ π))) | ||
Theorem | unisn0 44229 | The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ βͺ {β } = β | ||
Theorem | ssin0 44230 | If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (((π΄ β© π΅) = β β§ πΆ β π΄ β§ π· β π΅) β (πΆ β© π·) = β ) | ||
Theorem | inabs3 44231 | Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (πΆ β π΅ β ((π΄ β© π΅) β© πΆ) = (π΄ β© πΆ)) | ||
Theorem | pwpwuni 44232 | Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π΄ β π β (π΄ β π« π« π΅ β βͺ π΄ β π« π΅)) | ||
Theorem | disjiun2 44233* | In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β Disj π₯ β π΄ π΅) & β’ (π β πΆ β π΄) & β’ (π β π· β (π΄ β πΆ)) & β’ (π₯ = π· β π΅ = πΈ) β β’ (π β (βͺ π₯ β πΆ π΅ β© πΈ) = β ) | ||
Theorem | 0pwfi 44234 | The empty set is in any power set, and it's finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β β (π« π΄ β© Fin) | ||
Theorem | ssinss2d 44235 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π΅ β πΆ) β β’ (π β (π΄ β© π΅) β πΆ) | ||
Theorem | zct 44236 | The set of integer numbers is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β€ βΌ Ο | ||
Theorem | pwfin0 44237 | A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π« π΄ β© Fin) β β | ||
Theorem | uzct 44238 | An upper integer set is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ π = (β€β₯βπ) β β’ π βΌ Ο | ||
Theorem | iunxsnf 44239* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²π₯πΆ & β’ π΄ β V & β’ (π₯ = π΄ β π΅ = πΆ) β β’ βͺ π₯ β {π΄}π΅ = πΆ | ||
Theorem | fiiuncl 44240* | If a set is closed under the union of two sets, then it is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²π₯π & β’ ((π β§ π₯ β π΄) β π΅ β π·) & β’ ((π β§ π¦ β π· β§ π§ β π·) β (π¦ βͺ π§) β π·) & β’ (π β π΄ β Fin) & β’ (π β π΄ β β ) β β’ (π β βͺ π₯ β π΄ π΅ β π·) | ||
Theorem | iunp1 44241* | The addition of the next set to a union indexed by a finite set of sequential integers. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²ππ΅ & β’ (π β π β (β€β₯βπ)) & β’ (π = (π + 1) β π΄ = π΅) β β’ (π β βͺ π β (π...(π + 1))π΄ = (βͺ π β (π...π)π΄ βͺ π΅)) | ||
Theorem | fiunicl 44242* | If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ ((π β§ π₯ β π΄ β§ π¦ β π΄) β (π₯ βͺ π¦) β π΄) & β’ (π β π΄ β Fin) & β’ (π β π΄ β β ) β β’ (π β βͺ π΄ β π΄) | ||
Theorem | ixpeq2d 44243 | Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ β²π₯π & β’ ((π β§ π₯ β π΄) β π΅ = πΆ) β β’ (π β Xπ₯ β π΄ π΅ = Xπ₯ β π΄ πΆ) | ||
Theorem | disjxp1 44244* | The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β Disj π₯ β π΄ π΅) β β’ (π β Disj π₯ β π΄ (π΅ Γ πΆ)) | ||
Theorem | disjsnxp 44245* | The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ Disj π β π΄ ({π} Γ π΅) | ||
Theorem | eliind 44246* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β π΄ β β© π₯ β π΅ πΆ) & β’ (π β πΎ β π΅) & β’ (π₯ = πΎ β (π΄ β πΆ β π΄ β π·)) β β’ (π β π΄ β π·) | ||
Theorem | rspcef 44247 | Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ β²π₯π & β’ β²π₯π΄ & β’ β²π₯π΅ & β’ (π₯ = π΄ β (π β π)) β β’ ((π΄ β π΅ β§ π) β βπ₯ β π΅ π) | ||
Theorem | inn0f 44248 | A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ β²π₯π΄ & β’ β²π₯π΅ β β’ ((π΄ β© π΅) β β β βπ₯ β π΄ π₯ β π΅) | ||
Theorem | ixpssmapc 44249* | An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ β²π₯π & β’ (π β πΆ β π) & β’ ((π β§ π₯ β π΄) β π΅ β πΆ) β β’ (π β Xπ₯ β π΄ π΅ β (πΆ βm π΄)) | ||
Theorem | inn0 44250* | A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ ((π΄ β© π΅) β β β βπ₯ β π΄ π₯ β π΅) | ||
Theorem | elintd 44251* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ β²π₯π & β’ (π β π΄ β π) & β’ ((π β§ π₯ β π΅) β π΄ β π₯) β β’ (π β π΄ β β© π΅) | ||
Theorem | ssdf 44252* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ β²π₯π & β’ ((π β§ π₯ β π΄) β π₯ β π΅) β β’ (π β π΄ β π΅) | ||
Theorem | brneqtrd 44253 | Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β Β¬ π΄π π΅) & β’ (π β π΅ = πΆ) β β’ (π β Β¬ π΄π πΆ) | ||
Theorem | ssnct 44254 | A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β Β¬ π΄ βΌ Ο) & β’ (π β π΄ β π΅) β β’ (π β Β¬ π΅ βΌ Ο) | ||
Theorem | ssuniint 44255* | Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ β²π₯π & β’ (π β π΄ β π) & β’ ((π β§ π₯ β π΅) β π΄ β π₯) β β’ (π β π΄ β βͺ β© π΅) | ||
Theorem | elintdv 44256* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π΄ β π) & β’ ((π β§ π₯ β π΅) β π΄ β π₯) β β’ (π β π΄ β β© π΅) | ||
Theorem | ssd 44257* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ ((π β§ π₯ β π΄) β π₯ β π΅) β β’ (π β π΄ β π΅) | ||
Theorem | ralimralim 44258 | Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
β’ (βπ₯ β π΄ π β βπ₯ β π΄ (π β π)) | ||
Theorem | snelmap 44259 | Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ β β ) & β’ (π β (π΄ Γ {π₯}) β (π΅ βm π΄)) β β’ (π β π₯ β π΅) | ||
Theorem | xrnmnfpnf 44260 | An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
β’ (π β π΄ β β*) & β’ (π β Β¬ π΄ β β) & β’ (π β π΄ β -β) β β’ (π β π΄ = +β) | ||
Theorem | nelrnmpt 44261* | Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
β’ β²π₯π & β’ πΉ = (π₯ β π΄ β¦ π΅) & β’ (π β πΆ β π) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) β β’ (π β Β¬ πΆ β ran πΉ) | ||
Theorem | iuneq1i 44262* | Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
β’ π΄ = π΅ β β’ βͺ π₯ β π΄ πΆ = βͺ π₯ β π΅ πΆ | ||
Theorem | nssrex 44263* | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
β’ (Β¬ π΄ β π΅ β βπ₯ β π΄ Β¬ π₯ β π΅) | ||
Theorem | ssinc 44264* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β (β€β₯βπ)) & β’ ((π β§ π β (π..^π)) β (πΉβπ) β (πΉβ(π + 1))) β β’ (π β (πΉβπ) β (πΉβπ)) | ||
Theorem | ssdec 44265* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β (β€β₯βπ)) & β’ ((π β§ π β (π..^π)) β (πΉβ(π + 1)) β (πΉβπ)) β β’ (π β (πΉβπ) β (πΉβπ)) | ||
Theorem | elixpconstg 44266* | Membership in an infinite Cartesian product of a constant π΅. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (πΉ β π β (πΉ β Xπ₯ β π΄ π΅ β πΉ:π΄βΆπ΅)) | ||
Theorem | iineq1d 44267* | Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π΄ = π΅) β β’ (π β β© π₯ β π΄ πΆ = β© π₯ β π΅ πΆ) | ||
Theorem | metpsmet 44268 | A metric is a pseudometric. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π· β (Metβπ) β π· β (PsMetβπ)) | ||
Theorem | ixpssixp 44269 | Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ β²π₯π & β’ ((π β§ π₯ β π΄) β π΅ β πΆ) β β’ (π β Xπ₯ β π΄ π΅ β Xπ₯ β π΄ πΆ) | ||
Theorem | ballss3 44270* | A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ β²π₯π & β’ (π β π· β (PsMetβπ)) & β’ (π β π β π) & β’ (π β π β β*) & β’ ((π β§ π₯ β π β§ (ππ·π₯) < π ) β π₯ β π΄) β β’ (π β (π(ballβπ·)π ) β π΄) | ||
Theorem | iunincfi 44271* | Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β (β€β₯βπ)) & β’ ((π β§ π β (π..^π)) β (πΉβπ) β (πΉβ(π + 1))) β β’ (π β βͺ π β (π...π)(πΉβπ) = (πΉβπ)) | ||
Theorem | nsstr 44272 | If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ ((Β¬ π΄ β π΅ β§ πΆ β π΅) β Β¬ π΄ β πΆ) | ||
Theorem | rexanuz3 44273* | Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²ππ & β’ π = (β€β₯βπ) & β’ (π β βπ β π βπ β (β€β₯βπ)π) & β’ (π β βπ β π βπ β (β€β₯βπ)π) & β’ (π = π β (π β π)) & β’ (π = π β (π β π)) β β’ (π β βπ β π (π β§ π)) | ||
Theorem | cbvmpo2 44274* | Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π¦π΄ & β’ β²π€π΄ & β’ β²π€πΆ & β’ β²π¦πΈ & β’ (π¦ = π€ β πΆ = πΈ) β β’ (π₯ β π΄, π¦ β π΅ β¦ πΆ) = (π₯ β π΄, π€ β π΅ β¦ πΈ) | ||
Theorem | cbvmpo1 44275* | Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π₯π΅ & β’ β²π§π΅ & β’ β²π§πΆ & β’ β²π₯πΈ & β’ (π₯ = π§ β πΆ = πΈ) β β’ (π₯ β π΄, π¦ β π΅ β¦ πΆ) = (π§ β π΄, π¦ β π΅ β¦ πΈ) | ||
Theorem | eliuniin 44276* | Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ π΄ = βͺ π₯ β π΅ β© π¦ β πΆ π· β β’ (π β π β (π β π΄ β βπ₯ β π΅ βπ¦ β πΆ π β π·)) | ||
Theorem | ssabf 44277 | Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π₯π΄ β β’ (π΄ β {π₯ β£ π} β βπ₯(π₯ β π΄ β π)) | ||
Theorem | pssnssi 44278 | A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ π΄ β π΅ β β’ Β¬ π΅ β π΄ | ||
Theorem | rabidim2 44279 | Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π₯ β {π₯ β π΄ β£ π} β π) | ||
Theorem | eluni2f 44280* | Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π₯π΄ & β’ β²π₯π΅ β β’ (π΄ β βͺ π΅ β βπ₯ β π΅ π΄ β π₯) | ||
Theorem | eliin2f 44281* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π₯π΅ β β’ (π΅ β β β (π΄ β β© π₯ β π΅ πΆ β βπ₯ β π΅ π΄ β πΆ)) | ||
Theorem | nssd 44282 | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β π΄) & β’ (π β Β¬ π β π΅) β β’ (π β Β¬ π΄ β π΅) | ||
Theorem | iineq12dv 44283* | Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π΄ = π΅) & β’ ((π β§ π₯ β π΅) β πΆ = π·) β β’ (π β β© π₯ β π΄ πΆ = β© π₯ β π΅ π·) | ||
Theorem | supxrcld 44284 | The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π΄ β β*) β β’ (π β sup(π΄, β*, < ) β β*) | ||
Theorem | elrestd 44285 | A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π½ β π) & β’ (π β π΅ β π) & β’ (π β π β π½) & β’ π΄ = (π β© π΅) β β’ (π β π΄ β (π½ βΎt π΅)) | ||
Theorem | eliuniincex 44286* | Counterexample to show that the additional conditions in eliuniin 44276 and eliuniin2 44297 are actually needed. Notice that the definition of π΄ is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ π΅ = {β } & β’ πΆ = β & β’ π· = β & β’ π = V β β’ Β¬ (π β π΄ β βπ₯ β π΅ βπ¦ β πΆ π β π·) | ||
Theorem | eliincex 44287* | Counterexample to show that the additional conditions in eliin 4992 and eliin2 44293 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ π΄ = V & β’ π΅ = β β β’ Β¬ (π΄ β β© π₯ β π΅ πΆ β βπ₯ β π΅ π΄ β πΆ) | ||
Theorem | eliinid 44288* | Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ ((π΄ β β© π₯ β π΅ πΆ β§ π₯ β π΅) β π΄ β πΆ) | ||
Theorem | abssf 44289 | Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π₯π΄ β β’ ({π₯ β£ π} β π΄ β βπ₯(π β π₯ β π΄)) | ||
Theorem | supxrubd 44290 | A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π΄ β β*) & β’ (π β π΅ β π΄) & β’ π = sup(π΄, β*, < ) β β’ (π β π΅ β€ π) | ||
Theorem | ssrabf 44291 | Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π₯π΅ & β’ β²π₯π΄ β β’ (π΅ β {π₯ β π΄ β£ π} β (π΅ β π΄ β§ βπ₯ β π΅ π)) | ||
Theorem | ssrabdf 44292 | Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
β’ β²π₯π΄ & β’ β²π₯π΅ & β’ β²π₯π & β’ (π β π΅ β π΄) & β’ ((π β§ π₯ β π΅) β π) β β’ (π β π΅ β {π₯ β π΄ β£ π}) | ||
Theorem | eliin2 44293* | Membership in indexed intersection. See eliincex 44287 for a counterexample showing that the precondition π΅ β β cannot be simply dropped. eliin 4992 uses an alternative precondition (and it doesn't have a disjoint var constraint between π΅ and π₯; see eliin2f 44281). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π΅ β β β (π΄ β β© π₯ β π΅ πΆ β βπ₯ β π΅ π΄ β πΆ)) | ||
Theorem | ssrab2f 44294 | Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π₯π΄ β β’ {π₯ β π΄ β£ π} β π΄ | ||
Theorem | restuni3 44295 | The underlying set of a subspace induced by the subspace operator βΎt. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β βͺ (π΄ βΎt π΅) = (βͺ π΄ β© π΅)) | ||
Theorem | rabssf 44296 | Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π₯π΅ β β’ ({π₯ β π΄ β£ π} β π΅ β βπ₯ β π΄ (π β π₯ β π΅)) | ||
Theorem | eliuniin2 44297* | Indexed union of indexed intersections. See eliincex 44287 for a counterexample showing that the precondition πΆ β β cannot be simply dropped. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π₯πΆ & β’ π΄ = βͺ π₯ β π΅ β© π¦ β πΆ π· β β’ (πΆ β β β (π β π΄ β βπ₯ β π΅ βπ¦ β πΆ π β π·)) | ||
Theorem | restuni4 44298 | The underlying set of a subspace induced by the βΎt operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π΄ β π) & β’ (π β π΅ β βͺ π΄) β β’ (π β βͺ (π΄ βΎt π΅) = π΅) | ||
Theorem | restuni6 44299 | The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β βͺ (π΄ βΎt π΅) = (βͺ π΄ β© π΅)) | ||
Theorem | restuni5 44300 | The underlying set of a subspace induced by the βΎt operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ π = βͺ π½ β β’ ((π½ β π β§ π΄ β π) β π΄ = βͺ (π½ βΎt π΄)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |