![]() |
Metamath
Proof Explorer Theorem List (p. 443 of 445) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28391) |
![]() (28392-29914) |
![]() (29915-44438) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | resum2sqcl 44201 | The sum of two squares of real numbers is a real number. (Contributed by AV, 7-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ) | ||
Theorem | resum2sqgt0 44202 | The sum of the square of a nonzero real number and the square of another real number is greater than zero. (Contributed by AV, 7-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄) | ||
Theorem | resum2sqrp 44203 | The sum of the square of a nonzero real number and the square of another real number is a positive real number. (Contributed by AV, 2-May-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ+) | ||
Theorem | resum2sqorgt0 44204 | The sum of the square of two real numbers is greater than zero if at least one of the real numbers is nonzero. (Contributed by AV, 26-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄) | ||
Theorem | reorelicc 44205 | Membership in and outside of a closed real interval. (Contributed by AV, 15-Feb-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 ∨ 𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶)) | ||
Theorem | rrx2pxel 44206 | The x-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) ⇒ ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) | ||
Theorem | rrx2pyel 44207 | The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) ⇒ ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) | ||
Theorem | prelrrx2 44208 | An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃) | ||
Theorem | prelrrx2b 44209 | An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2, determined by its coordinates. (Contributed by AV, 7-May-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑍 ∈ 𝑃 ∧ (((𝑍‘1) = 𝐴 ∧ (𝑍‘2) = 𝐵) ∨ ((𝑍‘1) = 𝑋 ∧ (𝑍‘2) = 𝑌))) ↔ 𝑍 ∈ {{〈1, 𝐴〉, 〈2, 𝐵〉}, {〈1, 𝑋〉, 〈2, 𝑌〉}})) | ||
Theorem | rrx2pnecoorneor 44210 | If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then they are different at least at one coordinate. (Contributed by AV, 26-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) | ||
Theorem | rrx2pnedifcoorneor 44211 | If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) | ||
Theorem | rrx2pnedifcoorneorr 44212 | If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) | ||
Theorem | rrx2xpref1o 44213* | There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from {1, 2} to the real numbers). (Contributed by AV, 12-Mar-2023.) |
⊢ 𝑅 = (ℝ ↑𝑚 {1, 2}) & ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {〈1, 𝑥〉, 〈2, 𝑦〉}) ⇒ ⊢ 𝐹:(ℝ × ℝ)–1-1-onto→𝑅 | ||
Theorem | rrx2xpreen 44214 | The set of points in the two dimensional Euclidean plane and the set of ordered pairs of real numbers (the cartesian product of the real numbers) are equinumerous. (Contributed by AV, 12-Mar-2023.) |
⊢ 𝑅 = (ℝ ↑𝑚 {1, 2}) ⇒ ⊢ 𝑅 ≈ (ℝ × ℝ) | ||
Theorem | rrx2plord 44215* | The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point iff its first coordinate is less than the first coordinate of the other point, or the first coordinates of both points are equal and the second coordinate of the first point is less than the second coordinate of the other point: 〈𝑎, 𝑏〉 ≤ 〈𝑥, 𝑦〉 iff (𝑎 < 𝑥 ∨ (𝑎 = 𝑥 ∧ 𝑏 ≤ 𝑦)). (Contributed by AV, 12-Mar-2023.) |
⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} ⇒ ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))) | ||
Theorem | rrx2plord1 44216* | The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point if its first coordinate is less than the first coordinate of the other point. (Contributed by AV, 12-Mar-2023.) |
⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} ⇒ ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) < (𝑌‘1)) → 𝑋𝑂𝑌) | ||
Theorem | rrx2plord2 44217* | The lexicographical ordering for points in the two dimensional Euclidean plane: if the first coordinates of two points are equal, a point is less than another point iff the second coordinate of the point is less than the second coordinate of the other point. (Contributed by AV, 12-Mar-2023.) |
⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} & ⊢ 𝑅 = (ℝ ↑𝑚 {1, 2}) ⇒ ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2))) | ||
Theorem | rrx2plordisom 44218* | The set of points in the two dimensional Euclidean plane with the lexicographical ordering is isomorphic to the cartesian product of the real numbers with the lexicographical ordering implied by the ordering of the real numbers. (Contributed by AV, 12-Mar-2023.) |
⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} & ⊢ 𝑅 = (ℝ ↑𝑚 {1, 2}) & ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {〈1, 𝑥〉, 〈2, 𝑦〉}) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st ‘𝑥) < (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) < (2nd ‘𝑦))))} ⇒ ⊢ 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) | ||
Theorem | rrx2plordso 44219* | The lexicographical ordering for points in the two dimensional Euclidean plane is a strict complete ordering. (Contributed by AV, 12-Mar-2023.) |
⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))} & ⊢ 𝑅 = (ℝ ↑𝑚 {1, 2}) ⇒ ⊢ 𝑂 Or 𝑅 | ||
Theorem | ehl2eudisval0 44220 | The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023.) |
⊢ 𝐸 = (𝔼hil‘2) & ⊢ 𝑋 = (ℝ ↑𝑚 {1, 2}) & ⊢ 𝐷 = (dist‘𝐸) & ⊢ 0 = ({1, 2} × {0}) ⇒ ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) | ||
Theorem | ehl2eudis0lt 44221 | An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023.) |
⊢ 𝐸 = (𝔼hil‘2) & ⊢ 𝑋 = (ℝ ↑𝑚 {1, 2}) & ⊢ 𝐷 = (dist‘𝐸) & ⊢ 0 = ({1, 2} × {0}) ⇒ ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) | ||
Syntax | cline 44222 | Declare the syntax for lines in generalized real Euclidean spaces. |
class LineM | ||
Syntax | csph 44223 | Declare the syntax for spheres in generalized real Euclidean spaces. |
class Sphere | ||
Definition | df-line 44224* | Definition of lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.) |
⊢ LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠 ‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠 ‘𝑤)𝑦))})) | ||
Definition | df-sph 44225* | Definition of spheres for given centers and radii in a metric space (or more generally, in a distance space, see distspace 22614, or even in any extended structure having a base set and a distance function into the real numbers. (Contributed by AV, 14-Jan-2023.) |
⊢ Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) | ||
Theorem | lines 44226* | The lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐿 = (LineM‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ (𝑊 ∈ 𝑉 → 𝐿 = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) | ||
Theorem | line 44227* | The line passing through the two different points 𝑋 and 𝑌 in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐿 = (LineM‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) | ||
Theorem | rrxlines 44228* | Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.) |
⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ · = ( ·𝑠 ‘𝐸) & ⊢ + = (+g‘𝐸) ⇒ ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) | ||
Theorem | rrxline 44229* | The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.) |
⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ · = ( ·𝑠 ‘𝐸) & ⊢ + = (+g‘𝐸) ⇒ ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))}) | ||
Theorem | rrxlinesc 44230* | Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023.) |
⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) ⇒ ⊢ (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) | ||
Theorem | rrxlinec 44231* | The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc 44230. (Contributed by AV, 13-Feb-2023.) |
⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) ⇒ ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) | ||
Theorem | eenglngeehlnmlem1 44232* | Lemma 1 for eenglngeehlnm 44234. (Contributed by AV, 15-Feb-2023.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚 (1...𝑁))) → ((∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) | ||
Theorem | eenglngeehlnmlem2 44233* | Lemma 2 for eenglngeehlnm 44234. (Contributed by AV, 15-Feb-2023.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚 (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) | ||
Theorem | eenglngeehlnm 44234 | The line definition in the Tarski structure for the Euclidean geometry (see elntg 26458) corresponds to the definition of lines passing through two different points in a left module (see rrxlines 44228). (Contributed by AV, 16-Feb-2023.) |
⊢ (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil‘𝑁))) | ||
Theorem | rrx2line 44235* | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023.) (Proof shortened by AV, 13-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) | ||
Theorem | rrx2vlinest 44236* | The vertical line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘1) = (𝑋‘1)}) | ||
Theorem | rrx2linest 44237* | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)}) | ||
Theorem | rrx2linesl 44238* | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) | ||
Theorem | rrx2linest2 44239* | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}) | ||
Theorem | elrrx2linest2 44240 | The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ (𝑋𝐿𝑌) ↔ (𝐺 ∈ 𝑃 ∧ ((𝐴 · (𝐺‘1)) + (𝐵 · (𝐺‘2))) = 𝐶))) | ||
Theorem | spheres 44241* | The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Sphere‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) | ||
Theorem | sphere 44242* | A sphere with center 𝑋 and radius 𝑅 in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Sphere‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ (0[,]+∞)) → (𝑋𝑆𝑅) = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑋) = 𝑅}) | ||
Theorem | rrxsphere 44243* | The sphere with center 𝑀 and radius 𝑅 in a generalized real Euclidean space of finite dimension. Remark: this theorem holds also for the degenerate case 𝑅 < 0 (negative radius): in this case, (𝑀𝑆𝑅) is empty. (Contributed by AV, 5-Feb-2023.) |
⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐷 = (dist‘𝐸) & ⊢ 𝑆 = (Sphere‘𝐸) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}) | ||
Theorem | 2sphere 44244* | The sphere with center 𝑀 and radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ ((((𝑝‘1) − (𝑀‘1))↑2) + (((𝑝‘2) − (𝑀‘2))↑2)) = (𝑅↑2)} ⇒ ⊢ ((𝑀 ∈ 𝑃 ∧ 𝑅 ∈ (0[,)+∞)) → (𝑀𝑆𝑅) = 𝐶) | ||
Theorem | 2sphere0 44245* | The sphere around the origin 0 (see rrx0 23688) with radius 𝑅 in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐶 = {𝑝 ∈ 𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ⇒ ⊢ (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = 𝐶) | ||
Theorem | line2ylem 44246* | Lemma for line2y 44250. This proof is based on counterexamples for the following cases: 1. 𝐶 ≠ 0: p = (0,0) (LHS of bicondional is false, RHS is true); 2. 𝐶 = 0 ∧ 𝐵 ≠ 0: p = (1,-A/B) (LHS of bicondional is true, RHS is false); 3. 𝐴 = 𝐵 = 𝐶 = 0: p = (1,1) (LHS of bicondional is true, RHS is false). (Contributed by AV, 4-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝 ∈ 𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0))) | ||
Theorem | line2 44247* | Example for a line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐺 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} & ⊢ 𝑋 = {〈1, 0〉, 〈2, (𝐶 / 𝐵)〉} & ⊢ 𝑌 = {〈1, 1〉, 〈2, ((𝐶 − 𝐴) / 𝐵)〉} ⇒ ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐺 = (𝑋𝐿𝑌)) | ||
Theorem | line2xlem 44248* | Lemma for line2x 44249. This proof is based on counterexamples for the following cases: 1. 𝑀 ≠ (𝐶 / 𝐵): p = (0,C/B) (LHS of bicondional is true, RHS is false); 2. 𝐴 ≠ 0 ∧ 𝑀 = (𝐶 / 𝐵): p = (1,C/B) (LHS of bicondional is false, RHS is true). (Contributed by AV, 4-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐺 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} & ⊢ 𝑋 = {〈1, 0〉, 〈2, 𝑀〉} & ⊢ 𝑌 = {〈1, 1〉, 〈2, 𝑀〉} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝 ∈ 𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) → (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)))) | ||
Theorem | line2x 44249* | Example for a horizontal line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐺 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} & ⊢ 𝑋 = {〈1, 0〉, 〈2, 𝑀〉} & ⊢ 𝑌 = {〈1, 1〉, 〈2, 𝑀〉} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)))) | ||
Theorem | line2y 44250* | Example for a vertical line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐺 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} & ⊢ 𝑋 = {〈1, 0〉, 〈2, 𝑀〉} & ⊢ 𝑌 = {〈1, 0〉, 〈2, 𝑁〉} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0))) | ||
Theorem | itsclc0lem1 44251 | Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023.) |
⊢ (((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ (𝑊 ∈ ℝ ∧ 𝑊 ≠ 0)) → (((𝑆 · 𝑈) + (𝑇 · (√‘𝑉))) / 𝑊) ∈ ℝ) | ||
Theorem | itsclc0lem2 44252 | Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 3-May-2023.) |
⊢ (((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ (𝑊 ∈ ℝ ∧ 𝑊 ≠ 0)) → (((𝑆 · 𝑈) − (𝑇 · (√‘𝑉))) / 𝑊) ∈ ℝ) | ||
Theorem | itsclc0lem3 44253 | Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ) | ||
Theorem | itscnhlc0yqe 44254 | Lemma for itsclc0 44266. Quadratic equation for the y-coordinate of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 6-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
Theorem | itschlc0yqe 44255 | Lemma for itsclc0 44266. Quadratic equation for the y-coordinate of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
Theorem | itsclc0yqe 44256 | Lemma for itsclc0 44266. Quadratic equation for the y-coordinate of the intersection points of an arbitrary line and a circle. This theorem holds even for degenerate lines (𝐴 = 𝐵 = 0). (Contributed by AV, 25-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
Theorem | itsclc0yqsollem1 44257 | Lemma 1 for itsclc0yqsol 44259. (Contributed by AV, 6-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷)) | ||
Theorem | itsclc0yqsollem2 44258 | Lemma 2 for itsclc0yqsol 44259. (Contributed by AV, 6-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘((𝑇↑2) − (4 · (𝑄 · 𝑈)))) = ((2 · (abs‘𝐴)) · (√‘𝐷))) | ||
Theorem | itsclc0yqsol 44259 | Lemma for itsclc0 44266. Solutions of the quadratic equations for the y-coordinate of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 7-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | ||
Theorem | itscnhlc0xyqsol 44260 | Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 8-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
Theorem | itschlc0xyqsol1 44261 | Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (𝐶 / 𝐵) ∧ (𝑋 = -((√‘𝐷) / 𝐵) ∨ 𝑋 = ((√‘𝐷) / 𝐵))))) | ||
Theorem | itschlc0xyqsol 44262 | Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 8-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
Theorem | itsclc0xyqsol 44263 | Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 25-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
Theorem | itsclc0xyqsolr 44264 | Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) → (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶))) | ||
Theorem | itsclc0xyqsolb 44265 | Lemma for itsclc0 44266. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
Theorem | itsclc0 44266* | The intersection points of a line 𝐿 and a circle around the origin. (Contributed by AV, 25-Feb-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ 𝐿) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
Theorem | itsclc0b 44267* | The intersection points of a (nondegenerate) line through two points and a circle around the origin. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = {𝑝 ∈ 𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ 𝐿) ↔ (𝑋 ∈ 𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))) | ||
Theorem | itsclinecirc0 44268 | The intersection points of a line through two different points 𝑌 and 𝑍 and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023.) (Proof shortened by AV, 16-May-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑌‘2) − (𝑍‘2)) & ⊢ 𝐵 = ((𝑍‘1) − (𝑌‘1)) & ⊢ 𝐶 = (((𝑌‘2) · (𝑍‘1)) − ((𝑌‘1) · (𝑍‘2))) ⇒ ⊢ (((𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ∧ 𝑌 ≠ 𝑍) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋 ∈ (𝑌𝐿𝑍)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | ||
Theorem | itsclinecirc0b 44269 | The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ 𝑃 ∧ (((𝑍‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑍‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑍‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))) | ||
Theorem | itsclinecirc0in 44270 | The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space, expressed as intersection. (Contributed by AV, 7-May-2023.) (Revised by AV, 14-May-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{〈1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)〉}, {〈1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)〉}}) | ||
Theorem | itsclquadb 44271* | Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 22-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (∃𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
Theorem | itsclquadeu 44272* | Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023.) |
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝑇 = -(2 · (𝐵 · 𝐶)) & ⊢ 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → (∃!𝑥 ∈ ℝ (((𝑥↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑥) + (𝐵 · 𝑌)) = 𝐶) ↔ ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)) | ||
Theorem | 2itscplem1 44273 | Lemma 1 for 2itscp 44276. (Contributed by AV, 4-Mar-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) ⇒ ⊢ (𝜑 → ((((𝐸↑2) · (𝐵↑2)) + ((𝐷↑2) · (𝐴↑2))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) = (((𝐷 · 𝐴) − (𝐸 · 𝐵))↑2)) | ||
Theorem | 2itscplem2 44274 | Lemma 2 for 2itscp 44276. (Contributed by AV, 4-Mar-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) ⇒ ⊢ (𝜑 → (𝐶↑2) = ((((𝐷↑2) · (𝐵↑2)) + (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵)))) + ((𝐸↑2) · (𝐴↑2)))) | ||
Theorem | 2itscplem3 44275 | Lemma D for 2itscp 44276. (Contributed by AV, 4-Mar-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝑄 = ((𝐸↑2) + (𝐷↑2)) & ⊢ 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑆 = ((((𝐸↑2) · ((𝑅↑2) − (𝐴↑2))) + ((𝐷↑2) · ((𝑅↑2) − (𝐵↑2)))) − (2 · ((𝐷 · 𝐴) · (𝐸 · 𝐵))))) | ||
Theorem | 2itscp 44276 | A condition for a quadratic equation with real coefficients (for the intersection points of a line with a circle) to have (exactly) two different real solutions. (Contributed by AV, 5-Mar-2023.) (Revised by AV, 16-May-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2)) & ⊢ (𝜑 → (𝐵 ≠ 𝑌 ∨ 𝐴 ≠ 𝑋)) & ⊢ 𝑄 = ((𝐸↑2) + (𝐷↑2)) & ⊢ 𝑆 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) ⇒ ⊢ (𝜑 → 0 < 𝑆) | ||
Theorem | itscnhlinecirc02plem1 44277 | Lemma 1 for itscnhlinecirc02p 44280. (Contributed by AV, 6-Mar-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐷 · 𝐵) + (𝐸 · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2)) & ⊢ (𝜑 → 𝐵 ≠ 𝑌) ⇒ ⊢ (𝜑 → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))))) | ||
Theorem | itscnhlinecirc02plem2 44278 | Lemma 2 for itscnhlinecirc02p 44280. (Contributed by AV, 10-Mar-2023.) |
⊢ 𝐷 = (𝑋 − 𝐴) & ⊢ 𝐸 = (𝐵 − 𝑌) & ⊢ 𝐶 = ((𝐵 · 𝑋) − (𝐴 · 𝑌)) ⇒ ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) ∧ 𝐵 ≠ 𝑌) ∧ (𝑅 ∈ ℝ ∧ ((𝐴↑2) + (𝐵↑2)) < (𝑅↑2))) → 0 < ((-(2 · (𝐷 · 𝐶))↑2) − (4 · (((𝐸↑2) + (𝐷↑2)) · ((𝐶↑2) − ((𝐸↑2) · (𝑅↑2))))))) | ||
Theorem | itscnhlinecirc02plem3 44279 | Lemma 3 for itscnhlinecirc02p 44280. (Contributed by AV, 10-Mar-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2))))))) | ||
Theorem | itscnhlinecirc02p 44280* | Intersection of a nonhorizontal line with a circle: A nonhorizontal line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 28-Jan-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐷 = (dist‘𝐸) & ⊢ 𝑍 = {〈1, 𝑥〉, 〈2, 𝑦〉} ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑠 ∈ 𝒫 ℝ((♯‘𝑠) = 2 ∧ ∀𝑦 ∈ 𝑠 ∃!𝑥 ∈ ℝ (𝑍 ∈ ( 0 𝑆𝑅) ∧ 𝑍 ∈ (𝑋𝐿𝑌)))) | ||
Theorem | inlinecirc02plem 44281* | Lemma for inlinecirc02p 44282. (Contributed by AV, 7-May-2023.) (Revised by AV, 15-May-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) & ⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) & ⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) & ⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) & ⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) | ||
Theorem | inlinecirc02p 44282 | Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023.) (Revised by AV, 16-May-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper‘𝑃)) | ||
Theorem | inlinecirc02preu 44283* | Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023.) |
⊢ 𝐼 = {1, 2} & ⊢ 𝐸 = (ℝ^‘𝐼) & ⊢ 𝑃 = (ℝ ↑𝑚 𝐼) & ⊢ 𝑆 = (Sphere‘𝐸) & ⊢ 0 = (𝐼 × {0}) & ⊢ 𝐿 = (LineM‘𝐸) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑝 ∈ 𝒫 𝑃((♯‘𝑝) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)))) | ||
Some of these theorems are used in the series of lemmas and theorems proving the defining properties of setrecs. | ||
Theorem | nfintd 44284 | Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥∩ 𝐴) | ||
Theorem | nfiund 44285 | Bound-variable hypothesis builder for indexed union. (Contributed by Emmett Weisz, 6-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝐴) & ⊢ (𝜑 → Ⅎ𝑦𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | iunord 44286* | The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. This proof is based on the proof of ssorduni 7361, but does not use it directly, since ssorduni 7361 does not work when 𝐵 is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019.) |
⊢ (∀𝑥 ∈ 𝐴 Ord 𝐵 → Ord ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | iunordi 44287* | The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. (Contributed by Emmett Weisz, 3-Nov-2019.) |
⊢ Ord 𝐵 ⇒ ⊢ Ord ∪ 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | spd 44288 | Specialization deduction, using implicit substitution. Based on the proof of spimed 2362. (Contributed by Emmett Weisz, 17-Jan-2020.) |
⊢ (𝜒 → Ⅎ𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜒 → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | spcdvw 44289* | A version of spcdv 3536 where 𝜓 and 𝜒 are direct substitutions of each other. This theorem is useful because it does not require 𝜑 and 𝑥 to be distinct variables. (Contributed by Emmett Weisz, 12-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||
Theorem | tfis2d 44290* | Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020.) |
⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) & ⊢ (𝜑 → (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) ⇒ ⊢ (𝜑 → (𝑥 ∈ On → 𝜓)) | ||
Theorem | bnd2d 44291* | Deduction form of bnd2 9173. (Contributed by Emmett Weisz, 19-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜓)) | ||
Theorem | dffun3f 44292* | Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑧𝐴 ⇒ ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | ||
Symbols in this section: All the symbols used in the definition of setrecs(𝐹) are explained in the comment of df-setrecs 44294. The class 𝑌 is explained in the comment of setrec1lem1 44297. Glossaries of symbols used in individual proofs, or used differently in different proofs, are in the comments of those proofs. | ||
Syntax | csetrecs 44293 | Extend class notation to include a set defined by transfinite recursion. |
class setrecs(𝐹) | ||
Definition | df-setrecs 44294* |
Define a class setrecs(𝐹) by transfinite recursion, where
(𝐹‘𝑥) is the set of new elements to add to
the class given the
set 𝑥 of elements in the class so far. We
do not need a base case,
because we can start with the empty set, which is vacuously a subset of
setrecs(𝐹). The goal of this definition is to
construct a class
fulfilling theorems setrec1 44301 and setrec2v 44306, which give a more
intuitive idea of the meaning of setrecs.
Unlike wrecs,
setrecs is well-defined for any 𝐹 and
meaningful for any
function 𝐹.
For example, see theorem onsetrec 44317 for how the class On is defined recursively using the successor function. The definition works by building subsets of the desired class and taking the union of those subsets. To find such a collection of subsets, consider an arbitrary set 𝑧, and consider the result when applying 𝐹 to any subset 𝑤 ⊆ 𝑧. Remember that 𝐹 can be any function, and in general we are interested in functions that give outputs that are larger than their inputs, so we have no reason to expect the outputs to be within 𝑧. However, if we restrict the domain of 𝐹 to a given set 𝑦, the resulting range will be a set. Therefore, with this restricted 𝐹, it makes sense to consider sets 𝑧 that are closed under 𝐹 applied to its subsets. Now we can test whether a given set 𝑦 is recursively generated by 𝐹. If every set 𝑧 that is closed under 𝐹 contains 𝑦, that means that every member of 𝑦 must eventually be generated by 𝐹. On the other hand, if some such 𝑧 does not contain a certain element of 𝑦, then that element can be avoided even if we apply 𝐹 in every possible way to previously generated elements. Note that such an omitted element might be eventually recursively generated by 𝐹, but not through the elements of 𝑦. In this case, 𝑦 would fail the condition in the definition, but the omitted element would still be included in some larger 𝑦. For example, if 𝐹 is the successor function, the set {∅, 2o} would fail the condition since 2o is not an element of the successor of ∅ or {∅}. Remember that we are applying 𝐹 to subsets of 𝑦, not elements of 𝑦. In fact, even the set {1o} fails the condition, since the only subset of previously generated elements is ∅, and suc ∅ does not have 1o as an element. However, we can let 𝑦 be any ordinal, since each of its elements is generated by starting with ∅ and repeatedly applying the successor function. A similar definition I initially used for setrecs(𝐹) was setrecs(𝐹) = ∪ ran recs((𝑔 ∈ V ↦ (𝐹‘∪ ran 𝑔))). I had initially tried and failed to find an elementary definition, and I had proven theorems analogous to setrec1 44301 and setrec2v 44306 using the old definition before I found the new one. I decided to change definitions for two reasons. First, as John Horton Conway noted in the Appendix to Part Zero of On Numbers and Games, mathematicians should not be caught up in any particular formalization, such as ZF set theory. Instead, they should work under whatever framework best suits the problem, and the formal bases used for different problems can be shown to be equivalent. Thus, Conway preferred defining surreal numbers as equivalence classes of surreal number forms, rather than sign-expansions. Although sign-expansions are easier to implement in ZF set theory, Conway argued that "formalisation within some particular axiomatic set theory is irrelevant". Furthermore, one of the most remarkable properties of the theory of surreal numbers is that it generates so much from almost nothing. Using sign-expansions as the formal definition destroys the beauty of surreal numbers, because ordinals are already built in. For this reason, I replaced the old definition of setrecs, which also relied heavily on ordinal numbers. On the other hand, both surreal numbers and the elementary definition of setrecs immediately generate the ordinal numbers from a (relatively) very simple set-theoretical basis. Second, although it is still complicated to formalize the theory of recursively generated sets within ZF set theory, it is actually simpler and more natural to do so with set theory directly than with the theory of ordinal numbers. As Conway wrote, indexing the "birthdays" of sets is and should be unnecessary. Using an elementary definition for setrecs removes the reliance on the previously developed theory of ordinal numbers, allowing proofs to be simpler and more direct. Formalizing surreal numbers within Metamath is probably still not in the spirit of Conway. He said that "attempts to force arbitrary theories into a single formal straitjacket... produce unnecessarily cumbrous and inelegant contortions." Nevertheless, Metamath has proven to be much more versatile than it seems at first, and I think the theory of surreal numbers can be natural while fitting well into the Metamath framework. The difficulty in writing a definition in Metamath for setrecs(𝐹) is that the necessary properties to prove are self-referential (see setrec1 44301 and setrec2v 44306), so we cannot simply write the properties we want inside a class abstraction as with most definitions. As noted in the comment of df-rdg 7903, this is not actually a requirement of the Metamath language, but we would like to be able to eliminate all definitions by direct mechanical substitution. We cannot define setrecs using a class abstraction directly, because nothing about its individual elements tells us whether they are in the set. We need to know about previous elements first. One way of getting around this problem without indexing is by defining setrecs(𝐹) as a union or intersection of suitable sets. Thus, instead of using a class abstraction for the elements of setrecs(𝐹), which seems to be impossible, we can use a class abstraction for supersets or subsets of setrecs(𝐹), which "know" about multiple individual elements at a time. Note that we cannot define setrecs(𝐹) as an intersection of sets, because in general it is a proper class, so any supersets would also be proper classes. However, a proper class can be a union of sets, as long as the collection of such sets is a proper class. Therefore, it is feasible to define setrecs(𝐹) as a union of a class abstraction. If setrecs(𝐹) = ∪ 𝐴, the elements of A must be subsets of setrecs(𝐹) which together include everything recursively generated by 𝐹. We can do this by letting 𝐴 be the class of sets 𝑥 whose elements are all recursively generated by 𝐹. One necessary condition is that each element of a given 𝑥 ∈ 𝐴 must be generated by 𝐹 when applied to a previous element 𝑦 ∈ 𝐴. In symbols, ∀𝑥 ∈ 𝐴∃𝑦 ∈ 𝐴(𝑦 ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐹‘𝑦))}. However, this is not sufficient. All fixed points 𝑥 of 𝐹 will satisfy this condition whether they should be in setrecs(𝐹) or not. If we replace the subset relation with the proper subset relation, 𝑥 cannot be the empty set, even though the empty set should be in 𝐴. Therefore this condition cannot be used in the definition, even if we can find a way to avoid making it circular. A better strategy is to find a necessary and sufficient condition for all the elements of a set 𝑦 ∈ 𝐴 to be generated by 𝐹 when applied only to sets of previously generated elements within 𝑦. For example, taking 𝐹 to be the successor function, we can let 𝐴 = On rather than 𝒫 On, and we will still have ∪ 𝐴 = On as required. This gets rid of the circularity of the definition, since we should have a condition to test whether a given set 𝑦 is in 𝐴 without knowing about any of the other elements of 𝐴. The definition I ended up using accomplishes this using induction: 𝐴 is defined as the class of sets 𝑦 for which a sort of induction on the elements of 𝑦 holds. However, when creating a definition for setrecs that did not rely on ordinal numbers, I tried at first to write a definition using the well-founded relation predicate, Fr. I thought that this would be simple to do once I found a suitable definition using induction, just as the least- element principle is equivalent to induction on the positive integers. If we let 𝑅 = {〈𝑎, 𝑏〉 ∣ (𝐹‘𝑎) ⊆ 𝑏}, then (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥∀𝑧 ∈ 𝑥¬ (𝐹‘𝑧) ⊆ 𝑦)). On 22-Jul-2020 I came up with the following definition (Version 1) phrased in terms of induction: ∪ {𝑦 ∣ ∀𝑧 (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ∈ 𝑧 → (𝐹‘𝑤) ∈ 𝑧)) → 𝑦 ∈ 𝑧)} In Aug-2020 I came up with an equivalent definition with the goal of phrasing it in terms of the relation Fr. It is the contrapositive of the previous one with 𝑧 replaced by its complement. ∪ {𝑦 ∣ ∀𝑧 (𝑦 ∈ 𝑧 → ∃𝑤(𝑤 ⊆ 𝑦 ∧ (𝐹‘𝑤) ∈ 𝑧 ∧ ¬ 𝑤 ∈ 𝑧))} These definitions didn't work because the induction didn't "get off the ground." If 𝑧 does not contain the empty set, the condition (∀𝑤...𝑦 ∈ 𝑧 fails, so 𝑦 = ∅ doesn't get included in 𝐴 even though it should. This could be fixed by adding the base case as a separate requirement, but the subtler problem would remain that rather than a set of "acceptable" sets, what we really need is a collection 𝑧 of all individuals that have been generated so far. So one approach is to replace every occurrence of ∈ 𝑧 with ⊆ 𝑧, making 𝑧 a set of individuals rather than a family of sets. That solves this problem, but it complicates the foundedness version of the definition, which looked cleaner in Version 1. There was another problem with Version 1. If we let 𝐹 be the power set function, then the induction in the inductive version works for 𝑧 being the class of transitive sets, restricted to subsets of 𝑦. Therefore, 𝑦 must be transitive by definition of 𝑧. This doesn't affect the union of all such 𝑦, but it may or may not be desirable. The problem is that 𝐹 is only applied to transitive sets, because of the strong requirement 𝑤 ∈ 𝑧, so the definition requires the additional constraint (𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) in order to work. This issue can also be avoided by replacing ∈ 𝑧 with ⊆ 𝑧. The induction version of the result is used in the final definition. Version 2: (18-Aug-2020) Induction: ∪ {𝑦 ∣ ∀𝑧 (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} Foundedness: ∪ {𝑦 ∣ ∀𝑧(𝑦 ∩ 𝑧 ≠ ∅ → ∃𝑤(𝑤 ⊆ 𝑦 ∧ 𝑤 ∩ 𝑧 = ∅ ∧ (𝐹‘𝑤) ∩ 𝑧 ≠ ∅))} In the induction version, not only does 𝑧 include all the elements of 𝑦, but it must include the elements of (𝐹‘𝑤) for 𝑤 ⊆ (𝑦 ∩ 𝑧) even if those elements of (𝐹‘𝑤) are not in 𝑦. We shouldn't care about any of the elements of 𝑧 outside 𝑦, but this detail doesn't affect the correctness of the definition. If we replaced (𝐹‘𝑤) in the definition by ((𝐹‘𝑤) ∩ 𝑦), we would get the same class for setrecs(𝐹). Suppose we could find a 𝑧 for which the condition fails for a given 𝑦 under the changed definition. Then the antecedent would be true, but 𝑦 ⊆ 𝑧 would be false. We could then simply add all elements of (𝐹‘𝑤) outside of 𝑦 for any 𝑤 ⊆ 𝑦, which we can do because all the classes involved are sets. This is not trivial and requires the axioms of union, power set, and replacement. However, the expanded 𝑧 fails the condition under the Metamath definition. The other direction is easier. If a certain 𝑧 fails the Metamath definition, then all (𝐹‘𝑤) ⊆ 𝑧 for 𝑤 ⊆ (𝑦 ∩ 𝑧), and in particular ((𝐹‘𝑤) ∩ 𝑦) ⊆ 𝑧. The foundedness version is starting to look more like ax-reg 8907! We want to take advantage of the preexisting relation Fr, which seems closely related to our foundedness definition. Since we only care about the elements of 𝑧 which are subsets of 𝑦, we can restrict 𝑧 to 𝑦 in the foundedness definition. Furthermore, instead of quantifying over 𝑤, quantify over the elements 𝑣 ∈ 𝑧 overlapping with 𝑤. Versions 3, 4, and 5 are all equivalent to Version 2. Version 3 - Foundedness (5-Sep-2020): ∪ {𝑦 ∣ ∀𝑧((𝑧 ⊆ 𝑦 ∧ 𝑧 ≠ ∅) → ∃𝑣 ∈ 𝑧∃𝑤(𝑤 ⊆ 𝑦 ∧ 𝑤 ∩ 𝑧 = ∅ ∧ 𝑣 ∈ (𝐹‘𝑤)))} Now, if we replace (𝐹‘𝑤) by ((𝐹‘𝑤) ∩ 𝑦), we do not change the definition. We already know that 𝑣 ∈ 𝑦 since 𝑣 ∈ 𝑧 and 𝑧 ⊆ 𝑦. All we need to show in order to prove that this change leads to an equivalent definition is to find To make our definition look exactly like df-fr 5407, we add another variable 𝑢 representing the nonexistent element of 𝑤 in 𝑧. Version 4 - Foundedness (6-Sep-2020): ∪ {𝑦 ∣ ∀𝑧((𝑧 ⊆ 𝑦 ∧ 𝑧 ≠ ∅) → ∃𝑣 ∈ 𝑧∃𝑤∀𝑢 ∈ 𝑧(𝑤 ⊆ 𝑦 ∧ ¬ 𝑢 ∈ 𝑤 ∧ 𝑣 ∈ (𝐹‘𝑤)) This is so close to df-fr 5407; the only change needed is to switch ∃𝑤 with ∀𝑢 ∈ 𝑧. Unfortunately, I couldn't find any way to switch the quantifiers without interfering with the definition. Maybe there is a definition equivalent to this one that uses Fr, but I couldn't find one. Yet, we can still find a remarkable similarity between Foundedness Version 2 and ax-reg 8907. Rather than a disjoint element of 𝑧, there's a disjoint coverer of an element of 𝑧. Finally, here's a different dead end I followed: To clean up our foundedness definition, we keep 𝑧 as a family of sets 𝑦 but allow 𝑤 to be any subset of ∪ 𝑧 in the induction. With this stronger induction, we can also allow for the stronger requirement 𝒫 𝑦 ⊆ 𝑧 rather than only 𝑦 ∈ 𝑧. This will help improve the foundedness version. Version 1.1 (28-Aug-2020) Induction: ∪ {𝑦 ∣ ∀𝑧(∀𝑤 (𝑤 ⊆ 𝑦 → (𝑤 ⊆ ∪ 𝑧 → (𝐹‘𝑤) ∈ 𝑧)) → 𝒫 𝑦 ⊆ 𝑧)} Foundedness: ∪ {𝑦 ∣ ∀𝑧(∃𝑎(𝑎 ⊆ 𝑦 ∧ 𝑎 ∈ 𝑧) → ∃𝑤(𝑤 ⊆ 𝑦 ∧ 𝑤 ∩ ∩ 𝑧 = ∅ ∧ (𝐹‘𝑤) ∈ 𝑧))} ( Edit (Aug 31) - this isn't true! Nothing forces the subset of an element of 𝑧 to be in 𝑧. Version 2 does not have this issue. ) Similarly, we could allow 𝑤 to be any subset of any element of 𝑧 rather than any subset of ∪ 𝑧. I think this has the same problem. We want to take advantage of the preexisting relation Fr, which seems closely related to our foundedness definition. Since we only care about the elements of 𝑧 which are subsets of 𝑦, we can restrict 𝑧 to 𝒫 𝑦 in the foundedness definition: Version 1.2 (31-Aug-2020) Foundedness: ∪ {𝑦 ∣ ∀𝑧((𝑧 ⊆ 𝒫 𝑦 ∧ 𝑧 ≠ ∅) → ∃𝑤(𝑤 ∈ 𝒫 𝑦 ∧ 𝑤 ∩ ∩ 𝑧 = ∅ ∧ (𝐹‘𝑤) ∈ 𝑧))} Now this looks more like df-fr 5407! The last step necessary to be able to use Fr directly in our definition is to replace (𝐹‘𝑤) with its own setvar variable, corresponding to 𝑦 in df-fr 5407. This definition is incorrect, though, since there's nothing forcing the subset of an element of 𝑧 to be in 𝑧. Version 1.3 (31-Aug-2020) Induction: ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ ∪ 𝑧 → (𝑤 ∈ 𝑧 ∧ (𝐹‘𝑤) ∈ 𝑧))) → 𝒫 𝑦 ⊆ 𝑧)} Foundedness: ∪ {𝑦 ∣ ∀𝑧((𝑧 ⊆ 𝒫 𝑦 ∧ 𝑧 ≠ ∅) → ∃𝑤(𝑤 ∈ 𝒫 𝑦 ∧ 𝑤 ∩ ∩ 𝑧 = ∅ ∧ (𝑤 ∈ 𝑧 ∨ (𝐹‘𝑤) ∈ 𝑧)))} 𝑧 must contain the supersets of each of its elements in the foundedness version, and we can't make any restrictions on 𝑧 or 𝐹, so this doesn't work. Let's try letting R be the covering relation 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑏 ∈ (𝐹‘𝑎)} to solve the transitivity issue (i.e. that if 𝐹 is the power set relation, 𝐴 consists only of transitive sets). The set (𝐹‘𝑤) corresponds to the variable 𝑦 in df-fr 5407. Thus, in our case, df-fr 5407 is equivalent to (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑤((𝐹‘𝑤) ∈ 𝑧 ∧ ¬ ∃𝑣 ∈ 𝑧𝑣𝑅(𝐹‘𝑤))). Substituting our relation 𝑅 gives (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑤((𝐹‘𝑤) ∈ 𝑧 ∧ ¬ ∃𝑣 ∈ 𝑧(𝐹‘𝑤) ∈ (𝐹‘𝑣))) This doesn't work for non-injective 𝐹 because we need all 𝑧 to be straddlers, but we don't necessarily need all-straddlers; loops within z are fine for non-injective F. Consider the foundedness form of Version 1. We want to show ¬ 𝑤 ∈ 𝑧 ↔ ∀𝑣 ∈ 𝑧¬ 𝑣𝑅(𝐹‘𝑤) so we can replace one with the other. Negate both sides: 𝑤 ∈ 𝑧 ↔ ∃𝑣 ∈ 𝑧𝑣𝑅(𝐹‘𝑤) If 𝐹 is injective, then we should be able to pick a suitable R, being careful about the above problem for some F (for example z = transitivity) when changing the antecedent y e. z' to z =/= (/). If we're clever, we can get rid of the injectivity requirement. The forward direction of the above equivalence always holds, but the key is that although the backwards direction doesn't hold in general, we can always find some z' where it doesn't work for 𝑤 itself. If there exists a z' where the version with the w condition fails, then there exists a z' where the version with the v condition also fails. However, Version 1 is not a correct definition, so this doesn't work either. (Contributed by Emmett Weisz, 18-Aug-2020.) (New usage is discouraged.) |
⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | ||
Theorem | setrecseq 44295 | Equality theorem for set recursion. (Contributed by Emmett Weisz, 17-Feb-2021.) |
⊢ (𝐹 = 𝐺 → setrecs(𝐹) = setrecs(𝐺)) | ||
Theorem | nfsetrecs 44296 | Bound-variable hypothesis builder for setrecs. (Contributed by Emmett Weisz, 21-Oct-2021.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥setrecs(𝐹) | ||
Theorem | setrec1lem1 44297* |
Lemma for setrec1 44301. This is a utility theorem showing the
equivalence
of the statement 𝑋 ∈ 𝑌 and its expanded form. The proof
uses
elabg 3605 and equivalence theorems.
Variable 𝑌 is the class of sets 𝑦 that are recursively generated by the function 𝐹. In other words, 𝑦 ∈ 𝑌 iff by starting with the empty set and repeatedly applying 𝐹 to subsets 𝑤 of our set, we will eventually generate all the elements of 𝑌. In this theorem, 𝑋 is any element of 𝑌, and 𝑉 is any class. (Contributed by Emmett Weisz, 16-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑌 ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑋 ⊆ 𝑧))) | ||
Theorem | setrec1lem2 44298* | Lemma for setrec1 44301. If a family of sets are all recursively generated by 𝐹, so is their union. In this theorem, 𝑋 is a family of sets which are all elements of 𝑌, and 𝑉 is any class. Use dfss3 3882, equivalence and equality theorems, and unissb at the end. Sandwich with applications of setrec1lem1. (Contributed by Emmett Weisz, 24-Jan-2021.) (New usage is discouraged.) |
⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) ⇒ ⊢ (𝜑 → ∪ 𝑋 ∈ 𝑌) | ||
Theorem | setrec1lem3 44299* | Lemma for setrec1 44301. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 44298. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴 ∈ 𝑌. I don't know if proving this fact directly using setrec1lem1 44297 would be any easier than the current proof using setrec1lem2 44298, and it would only slightly simplify the proof of setrec1 44301. Other than the use of bnd2d 44291, this is a purely technical theorem for rearranging notation from that of setrec1lem2 44298 to that of setrec1 44301. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.) |
⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝑌)) ⇒ ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ 𝑌)) | ||
Theorem | setrec1lem4 44300* |
Lemma for setrec1 44301. If 𝑋 is recursively generated by 𝐹, then
so is 𝑋 ∪ (𝐹‘𝐴).
In the proof of setrec1 44301, the following is substituted for this theorem's 𝜑: (𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤 (𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) Therefore, we cannot declare 𝑧 to be a distinct variable from 𝜑, since we need it to appear as a bound variable in 𝜑. This theorem can be proven without the hypothesis Ⅎ𝑧𝜑, but the proof would be harder to read because theorems in deduction form would be interrupted by theorems like eximi 1816, making the antecedent of each line something more complicated than 𝜑. The proof of setrec1lem2 44298 could similarly be made easier to read by adding the hypothesis Ⅎ𝑧𝜑, but I had already finished the proof and decided to leave it as is. (Contributed by Emmett Weisz, 26-Nov-2020.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝑋 ∪ (𝐹‘𝐴)) ∈ 𝑌) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |