Home | Metamath
Proof Explorer Theorem List (p. 443 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nsssmfmbf 44201 | The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑆 = dom vol ⇒ ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn | ||
Theorem | smfpimgtxr 44202* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smfpimgtmpt 44203* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐿 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) | ||
Theorem | smfpreimage 44204* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of a closed interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | mbfpsssmf 44205 | Real-valued measurable functions are a proper subset of sigma-measurable functions (w.r.t. the Lebesgue measure on the reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑆 = dom vol ⇒ ⊢ (MblFn ∩ (ℝ ↑pm ℝ)) ⊊ (SMblFn‘𝑆) | ||
Theorem | smfpimgtxrmpt 44206* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐿 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) | ||
Theorem | smfpimioompt 44207* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐿 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆 ↾t 𝐴)) | ||
Theorem | smfpimioo 44208 | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (◡𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smfresal 44209* | Given a sigma-measurable function, the subsets of ℝ whose preimage is in the sigma-algebra induced by the function's domain, form a sigma-algebra. First part of the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} ⇒ ⊢ (𝜑 → 𝑇 ∈ SAlg) | ||
Theorem | smfrec 44210* | The reciprocal of a sigma-measurable functions is sigma-measurable. First part of Proposition 121E (e) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0} ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆)) | ||
Theorem | smfres 44211 | The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) | ||
Theorem | smfmullem1 44212 | The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝑉 ∈ ℝ) & ⊢ (𝜑 → (𝑈 · 𝑉) < 𝐴) & ⊢ 𝑋 = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) & ⊢ 𝑌 = if(1 ≤ 𝑋, 1, 𝑋) & ⊢ (𝜑 → 𝑃 ∈ ((𝑈 − 𝑌)(,)𝑈)) & ⊢ (𝜑 → 𝑅 ∈ (𝑈(,)(𝑈 + 𝑌))) & ⊢ (𝜑 → 𝑆 ∈ ((𝑉 − 𝑌)(,)𝑉)) & ⊢ (𝜑 → 𝑍 ∈ (𝑉(,)(𝑉 + 𝑌))) & ⊢ (𝜑 → 𝐻 ∈ (𝑃(,)𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (𝑆(,)𝑍)) ⇒ ⊢ (𝜑 → (𝐻 · 𝐼) < 𝐴) | ||
Theorem | smfmullem2 44213* | The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝐴} & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝑉 ∈ ℝ) & ⊢ (𝜑 → (𝑈 · 𝑉) < 𝐴) & ⊢ (𝜑 → 𝑃 ∈ ℚ) & ⊢ (𝜑 → 𝑅 ∈ ℚ) & ⊢ (𝜑 → 𝑆 ∈ ℚ) & ⊢ (𝜑 → 𝑍 ∈ ℚ) & ⊢ (𝜑 → 𝑃 ∈ ((𝑈 − 𝑌)(,)𝑈)) & ⊢ (𝜑 → 𝑅 ∈ (𝑈(,)(𝑈 + 𝑌))) & ⊢ (𝜑 → 𝑆 ∈ ((𝑉 − 𝑌)(,)𝑉)) & ⊢ (𝜑 → 𝑍 ∈ (𝑉(,)(𝑉 + 𝑌))) & ⊢ 𝑋 = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) & ⊢ 𝑌 = if(1 ≤ 𝑋, 1, 𝑋) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))) | ||
Theorem | smfmullem3 44214* | The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝑉 ∈ ℝ) & ⊢ (𝜑 → (𝑈 · 𝑉) < 𝑅) & ⊢ 𝑋 = ((𝑅 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) & ⊢ 𝑌 = if(1 ≤ 𝑋, 1, 𝑋) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))) | ||
Theorem | smfmullem4 44215* | The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} & ⊢ 𝐸 = (𝑞 ∈ 𝐾 ↦ {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) ⇒ ⊢ (𝜑 → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆 ↾t (𝐴 ∩ 𝐶))) | ||
Theorem | smfmul 44216* | The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆)) | ||
Theorem | smfmulc1 44217* | A sigma-measurable function multiplied by a constant is sigma-measurable. Proposition 121E (c) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ (SMblFn‘𝑆)) | ||
Theorem | smfdiv 44218* | The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) & ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) | ||
Theorem | smfpimbor1lem1 44219* | Every open set belongs to 𝑇. This is the second step in the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐺 ∈ 𝐽) & ⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑇) | ||
Theorem | smfpimbor1lem2 44220* | Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ 𝑃 = (◡𝐹 “ 𝐸) & ⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smfpimbor1 44221 | Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ 𝑃 = (◡𝐹 “ 𝐸) ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smf2id 44222* | Twice the identity function is Borel sigma-measurable (just an example, to test previous general theorems). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (2 · 𝑥)) ∈ (SMblFn‘𝐵)) | ||
Theorem | smfco 44223 | The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐻 ∈ (SMblFn‘𝐵)) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ (SMblFn‘𝑆)) | ||
Theorem | smfneg 44224* | The negative of a sigma-measurable function is measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ (SMblFn‘𝑆)) | ||
Theorem | smffmpt 44225* | A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) | ||
Theorem | smflim2 44226* | The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO: this has fewer distinct variable conditions than smflim 44199 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfpimcclem 44227* | Lemma for smfpimcc 44228 given the choice function 𝐶. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ 𝑍 ∈ 𝑉 & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘𝑦) ∈ 𝑦) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) | ||
Theorem | smfpimcc 44228* | Given a countable set of sigma-measurable functions, and a Borel set 𝐴 there exists a choice function ℎ that, for each measurable function, chooses a measurable set that, when intersected with the function's domain, gives the preimage of 𝐴. This is a generalization of the observation at the beginning of the proof of Proposition 121F of [Fremlin1] p. 39 . The statement would also be provable for uncountable sets, but in most cases it will suffice to consider the countable case, and only the axiom of countable choice will be needed. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) | ||
Theorem | issmfle2d 44229* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimmpt 44230* | The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). 𝐴 can contain 𝑚 as a free variable, in other words it can be thought as an indexed collection 𝐴(𝑚). 𝐵 can be thought as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfsuplem1 44231* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐻:𝑍⟶𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) ⇒ ⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smfsuplem2 44232* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smfsuplem3 44233* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfsup 44234* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfsupmpt 44235* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfsupxr 44236* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfinflem 44237* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfinf 44238* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfinfmpt 44239* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimsuplem1 44240* | If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) ⇒ ⊢ (𝜑 → dom (𝐻‘𝐾) ⊆ dom (𝐹‘𝐾)) | ||
Theorem | smflimsuplem2 44241* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝑛 ∈ 𝑍) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → 𝑋 ∈ dom (𝐻‘𝑛)) | ||
Theorem | smflimsuplem3 44242* | The limit of the (𝐻‘𝑛) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈ (ℤ≥‘𝑘)dom (𝐻‘𝑛) ∣ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimsuplem4 44243* | If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑥 ∈ ∩ 𝑛 ∈ (ℤ≥‘𝑁)dom (𝐻‘𝑛)) & ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) | ||
Theorem | smflimsuplem5 44244* | 𝐻 converges to the superior limit of 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) | ||
Theorem | smflimsuplem6 44245* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) | ||
Theorem | smflimsuplem7 44246* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐸 = (𝑘 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑘)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑘) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ (ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) | ||
Theorem | smflimsuplem8 44247* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ 𝐸 = (𝑘 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑘)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑘) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimsup 44248* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimsupmpt 44249* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfliminflem 44250* | The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfliminf 44251* | The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfliminfmpt 44252* | The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | sigarval 44253* | Define the signed area by treating complex numbers as vectors with two components. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) | ||
Theorem | sigarim 44254* | Signed area takes value in reals. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) ∈ ℝ) | ||
Theorem | sigarac 44255* | Signed area is anticommutative. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) | ||
Theorem | sigaraf 44256* | Signed area is additive by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) + (𝐶𝐺𝐵))) | ||
Theorem | sigarmf 44257* | Signed area is additive (with respect to subtraction) by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) − (𝐶𝐺𝐵))) | ||
Theorem | sigaras 44258* | Signed area is additive by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = ((𝐴𝐺𝐵) + (𝐴𝐺𝐶))) | ||
Theorem | sigarms 44259* | Signed area is additive (with respect to subtraction) by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 − 𝐶)) = ((𝐴𝐺𝐵) − (𝐴𝐺𝐶))) | ||
Theorem | sigarls 44260* | Signed area is linear by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶)) | ||
Theorem | sigarid 44261* | Signed area of a flat parallelogram is zero. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0) | ||
Theorem | sigarexp 44262* | Expand the signed area formula by linearity. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = (((𝐴𝐺𝐵) − (𝐴𝐺𝐶)) − (𝐶𝐺𝐵))) | ||
Theorem | sigarperm 44263* | Signed area (𝐴 − 𝐶)𝐺(𝐵 − 𝐶) acts as a double area of a triangle 𝐴𝐵𝐶. Here we prove that cyclically permuting the vertices doesn't change the area. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴))) | ||
Theorem | sigardiv 44264* | If signed area between vectors 𝐵 − 𝐴 and 𝐶 − 𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → ¬ 𝐶 = 𝐴) & ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) ⇒ ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) | ||
Theorem | sigarimcd 44265* | Signed area takes value in complex numbers. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ⇒ ⊢ (𝜑 → (𝐴𝐺𝐵) ∈ ℂ) | ||
Theorem | sigariz 44266* | If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) & ⊢ (𝜑 → (𝐴𝐺𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵𝐺𝐴) = 0) | ||
Theorem | sigarcol 44267* | Given three points 𝐴, 𝐵 and 𝐶 such that ¬ 𝐴 = 𝐵, the point 𝐶 lies on the line going through 𝐴 and 𝐵 iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵))))) | ||
Theorem | sharhght 44268* | Let 𝐴𝐵𝐶 be a triangle, and let 𝐷 lie on the line 𝐴𝐵. Then (doubled) areas of triangles 𝐴𝐷𝐶 and 𝐶𝐷𝐵 relate as lengths of corresponding bases 𝐴𝐷 and 𝐷𝐵. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴 − 𝐷)𝐺(𝐵 − 𝐷)) = 0)) ⇒ ⊢ (𝜑 → (((𝐶 − 𝐴)𝐺(𝐷 − 𝐴)) · (𝐵 − 𝐷)) = (((𝐶 − 𝐵)𝐺(𝐷 − 𝐵)) · (𝐴 − 𝐷))) | ||
Theorem | sigaradd 44269* | Subtracting (double) area of 𝐴𝐷𝐶 from 𝐴𝐵𝐶 yields the (double) area of 𝐷𝐵𝐶. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴 − 𝐷)𝐺(𝐵 − 𝐷)) = 0)) ⇒ ⊢ (𝜑 → (((𝐵 − 𝐶)𝐺(𝐴 − 𝐶)) − ((𝐷 − 𝐶)𝐺(𝐴 − 𝐶))) = ((𝐵 − 𝐶)𝐺(𝐷 − 𝐶))) | ||
Theorem | cevathlem1 44270 | Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) & ⊢ (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0)) & ⊢ (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾))) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾)) | ||
Theorem | cevathlem2 44271* | Ceva's theorem second lemma. Relate (doubled) areas of triangles 𝐶𝐴𝑂 and 𝐴𝐵𝑂 with of segments 𝐵𝐷 and 𝐷𝐶. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → 𝑂 ∈ ℂ) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐷 − 𝑂)) = 0 ∧ ((𝐵 − 𝑂)𝐺(𝐸 − 𝑂)) = 0 ∧ ((𝐶 − 𝑂)𝐺(𝐹 − 𝑂)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝐹)𝐺(𝐵 − 𝐹)) = 0 ∧ ((𝐵 − 𝐷)𝐺(𝐶 − 𝐷)) = 0 ∧ ((𝐶 − 𝐸)𝐺(𝐴 − 𝐸)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) ≠ 0 ∧ ((𝐵 − 𝑂)𝐺(𝐶 − 𝑂)) ≠ 0 ∧ ((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) ≠ 0)) ⇒ ⊢ (𝜑 → (((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) · (𝐵 − 𝐷)) = (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) · (𝐷 − 𝐶))) | ||
Theorem | cevath 44272* |
Ceva's theorem. Let 𝐴𝐵𝐶 be a triangle and let points 𝐹,
𝐷 and 𝐸 lie on sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐴
correspondingly. Suppose that cevians 𝐴𝐷, 𝐵𝐸 and 𝐶𝐹
intersect at one point 𝑂. Then triangle's sides are
partitioned
into segments and their lengths satisfy a certain identity. Here we
obtain a bit stronger version by using complex numbers themselves
instead of their absolute values.
The proof goes by applying cevathlem2 44271 three times and then using cevathlem1 44270 to multiply obtained identities and prove the theorem. In the theorem statement we are using function 𝐺 as a collinearity indicator. For justification of that use, see sigarcol 44267. This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → 𝑂 ∈ ℂ) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐷 − 𝑂)) = 0 ∧ ((𝐵 − 𝑂)𝐺(𝐸 − 𝑂)) = 0 ∧ ((𝐶 − 𝑂)𝐺(𝐹 − 𝑂)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝐹)𝐺(𝐵 − 𝐹)) = 0 ∧ ((𝐵 − 𝐷)𝐺(𝐶 − 𝐷)) = 0 ∧ ((𝐶 − 𝐸)𝐺(𝐴 − 𝐸)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) ≠ 0 ∧ ((𝐵 − 𝑂)𝐺(𝐶 − 𝑂)) ≠ 0 ∧ ((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) ≠ 0)) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐹) · (𝐶 − 𝐸)) · (𝐵 − 𝐷)) = (((𝐹 − 𝐵) · (𝐸 − 𝐴)) · (𝐷 − 𝐶))) | ||
Theorem | simpcntrab 44273 | The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) | ||
Theorem | hirstL-ax3 44274 | The third axiom of a system called "L" but proven to be a theorem since set.mm uses a different third axiom. This is named hirst after Holly P. Hirst and Jeffry L. Hirst. Axiom A3 of [Mendelson] p. 35. (Contributed by Jarvin Udandy, 7-Feb-2015.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → ¬ 𝜓) → ((¬ 𝜑 → 𝜓) → 𝜑)) | ||
Theorem | ax3h 44275 | Recover ax-3 8 from hirstL-ax3 44274. (Contributed by Jarvin Udandy, 3-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | ||
Theorem | aibandbiaiffaiffb 44276 | A closed form showing (a implies b and b implies a) same-as (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (𝜑 ↔ 𝜓)) | ||
Theorem | aibandbiaiaiffb 44277 | A closed form showing (a implies b and b implies a) implies (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) | ||
Theorem | notatnand 44278 | Do not use. Use intnanr instead. Given not a, there exists a proof for not (a and b). (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜑 ∧ 𝜓) | ||
Theorem | aistia 44279 | Given a is equivalent to ⊤, there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
⊢ (𝜑 ↔ ⊤) ⇒ ⊢ 𝜑 | ||
Theorem | aisfina 44280 | Given a is equivalent to ⊥, there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
⊢ (𝜑 ↔ ⊥) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | bothtbothsame 44281 | Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | bothfbothsame 44282 | Given both a, b are equivalent to ⊥, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | aiffbbtat 44283 | Given a is equivalent to b, b is equivalent to ⊤ there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ↔ ⊤) | ||
Theorem | aisbbisfaisf 44284 | Given a is equivalent to b, b is equivalent to ⊥ there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
Theorem | axorbtnotaiffb 44285 | Given a is exclusive to b, there exists a proof for (not (a if-and-only-if b)); df-xor 1504 is a closed form of this. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜓) ⇒ ⊢ ¬ (𝜑 ↔ 𝜓) | ||
Theorem | aiffnbandciffatnotciffb 44286 | Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ ¬ 𝜓) & ⊢ (𝜒 ↔ 𝜑) ⇒ ⊢ ¬ (𝜒 ↔ 𝜓) | ||
Theorem | axorbciffatcxorb 44287 | Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜓) & ⊢ (𝜒 ↔ 𝜑) ⇒ ⊢ (𝜒 ⊻ 𝜓) | ||
Theorem | aibnbna 44288 | Given a implies b, (not b), there exists a proof for (not a). (Contributed by Jarvin Udandy, 1-Sep-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ ¬ 𝜓 ⇒ ⊢ ¬ 𝜑 | ||
Theorem | aibnbaif 44289 | Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ ¬ 𝜓 ⇒ ⊢ (𝜑 ↔ ⊥) | ||
Theorem | aiffbtbat 44290 | Given a is equivalent to b, T. is equivalent to b. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (⊤ ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ ⊤) | ||
Theorem | astbstanbst 44291 | Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ ((𝜑 ∧ 𝜓) ↔ ⊤) | ||
Theorem | aistbistaandb 44292 | Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for (a and b). (Contributed by Jarvin Udandy, 9-Sep-2016.) |
⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ∧ 𝜓) | ||
Theorem | aisbnaxb 44293 | Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ¬ (𝜑 ⊻ 𝜓) | ||
Theorem | atbiffatnnb 44294 | If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 28-Aug-2016.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||
Theorem | bisaiaisb 44295 | Application of bicom1 with a, b swapped. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | ||
Theorem | atbiffatnnbalt 44296 | If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||
Theorem | abnotbtaxb 44297 | Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ 𝜑 & ⊢ ¬ 𝜓 ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
Theorem | abnotataxb 44298 | Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ ¬ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
Theorem | conimpf 44299 | Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016.) |
⊢ 𝜑 & ⊢ ¬ 𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
Theorem | conimpfalt 44300 | Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ 𝜑 & ⊢ ¬ 𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ ⊥) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |