| Metamath
Proof Explorer Theorem List (p. 443 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | int-eqmvtd 44201 | EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐵 − 𝐷)) | ||
| Theorem | int-eqineqd 44202 | EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) | ||
| Theorem | int-ineqmvtd 44203 | IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐷) ≤ 𝐶) | ||
| Theorem | int-ineq1stprincd 44204 | FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐷 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐵 + 𝐷) ≤ (𝐴 + 𝐶)) | ||
| Theorem | int-ineq2ndprincd 44205 | SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) ≤ (𝐴 · 𝐶)) | ||
| Theorem | int-ineqtransd 44206 | InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ≤ 𝐴) | ||
This section formalizes theorems used in an n-digit addition proof generator. Other theorems required: deccl 12595 addcomli 11297 00id 11280 addridi 11292 addlidi 11293 eqid 2730 dec0h 12602 decadd 12634 decaddc 12635. | ||
| Theorem | unitadd 44207 | Theorem used in conjunction with decaddc 12635 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| ⊢ (𝐴 + 𝐵) = 𝐹 & ⊢ (𝐶 + 1) = 𝐵 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 | ||
| Theorem | gsumws3 44208 | Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝑆 + (𝑇 + 𝑈))) | ||
| Theorem | gsumws4 44209 | Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) | ||
| Theorem | amgm2d 44210 | Arithmetic-geometric mean inequality for 𝑛 = 2, derived from amgmlem 26920. (Contributed by Stanislas Polu, 8-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2)) | ||
| Theorem | amgm3d 44211 | Arithmetic-geometric mean inequality for 𝑛 = 3. (Contributed by Stanislas Polu, 11-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3)) | ||
| Theorem | amgm4d 44212 | Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4)) | ||
| Theorem | spALT 44213 | sp 2185 can be proven from the other classic axioms. (Contributed by Rohan Ridenour, 3-Nov-2023.) (Proof modification is discouraged.) Use sp 2185 instead. (New usage is discouraged.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | elnelneqd 44214 | Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
| Theorem | elnelneq2d 44215 | Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
| Theorem | rr-spce 44216* | Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | rexlimdvaacbv 44217* | Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3132. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜃)) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | rexlimddvcbvw 44218* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44217. The equivalent of this theorem without the bound variable change is rexlimddv 3137. Version of rexlimddvcbv 44219 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by GG, 2-Apr-2024.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | rexlimddvcbv 44219* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44217. The equivalent of this theorem without the bound variable change is rexlimddv 3137. Usage of this theorem is discouraged because it depends on ax-13 2371, see rexlimddvcbvw 44218 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | rr-elrnmpt3d 44220* | Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) | ||
| Theorem | rr-phpd 44221 | Equivalent of php 9111 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | tfindsd 44222* | Deduction associated with tfinds 7785. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| ⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = suc 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑦 ∈ On ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝜃) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ On) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Syntax | cmnring 44223 | Extend class notation with the monoid ring function. |
| class MndRing | ||
| Definition | df-mnring 44224* | Define the monoid ring function. This takes a monoid 𝑀 and a ring 𝑅 and produces a free left module over 𝑅 with a product extending the monoid function on 𝑀. (Contributed by Rohan Ridenour, 13-May-2024.) |
| ⊢ MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) | ||
| Theorem | mnringvald 44225* | Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 )))))〉)) | ||
| Theorem | mnringnmulrd 44226 | Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
| Theorem | mnringbased 44227 | The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
| Theorem | mnringbaserd 44228 | The base set of a monoid ring. Converse of mnringbased 44227. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) | ||
| Theorem | mnringelbased 44229 | Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp 0 ))) | ||
| Theorem | mnringbasefd 44230 | Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) | ||
| Theorem | mnringbasefsuppd 44231 | Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 finSupp 0 ) | ||
| Theorem | mnringaddgd 44232 | The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
| Theorem | mnring0gd 44233 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (0g‘𝑉) = (0g‘𝐹)) | ||
| Theorem | mnring0g2d 44234 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × { 0 }) = (0g‘𝐹)) | ||
| Theorem | mnringmulrd 44235* | The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 ))))) = (.r‘𝐹)) | ||
| Theorem | mnringscad 44236 | The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
| Theorem | mnringvscad 44237 | The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
| Theorem | mnringlmodd 44238 | Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹 ∈ LMod) | ||
| Theorem | mnringmulrvald 44239* | Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∙ = (.r‘𝑅) & ⊢ 𝟎 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) | ||
| Theorem | mnringmulrcld 44240 | Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.) |
| ⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | ||
| Theorem | gru0eld 44241 | A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → ∅ ∈ 𝐺) | ||
| Theorem | grusucd 44242 | Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → suc 𝐴 ∈ 𝐺) | ||
| Theorem | r1rankcld 44243 | Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) ⇒ ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) | ||
| Theorem | grur1cld 44244 | Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝑅1‘𝐴) ∈ 𝐺) | ||
| Theorem | grurankcld 44245 | Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) | ||
| Theorem | grurankrcld 44246 | If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐺) | ||
| Syntax | cscott 44247 | Extend class notation with the Scott's trick operation. |
| class Scott 𝐴 | ||
| Definition | df-scott 44248* | Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | ||
| Theorem | scotteqd 44249 | Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) | ||
| Theorem | scotteq 44250 | Closed form of scotteqd 44249. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| ⊢ (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵) | ||
| Theorem | nfscott 44251 | Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥Scott 𝐴 | ||
| Theorem | scottabf 44252* | Value of the Scott operation at a class abstraction. Variant of scottab 44253 with a nonfreeness hypothesis instead of a disjoint variable condition. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
| Theorem | scottab 44253* | Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
| Theorem | scottabes 44254* | Value of the Scott operation at a class abstraction. Variant of scottab 44253 using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
| Theorem | scottss 44255 | Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ Scott 𝐴 ⊆ 𝐴 | ||
| Theorem | elscottab 44256* | An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) | ||
| Theorem | scottex2 44257 | scottex 9770 expressed using Scott. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| ⊢ Scott 𝐴 ∈ V | ||
| Theorem | scotteld 44258* | The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) | ||
| Theorem | scottelrankd 44259 | Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) & ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) | ||
| Theorem | scottrankd 44260 | Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) | ||
| Theorem | gruscottcld 44261 | If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐵 ∈ 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → Scott 𝐴 ∈ 𝐺) | ||
| Syntax | ccoll 44262 | Extend class notation with the collection operation. |
| class (𝐹 Coll 𝐴) | ||
| Definition | df-coll 44263* | Define the collection operation. This is similar to the image set operation “, but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | ||
| Theorem | dfcoll2 44264* | Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} | ||
| Theorem | colleq12d 44265 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) | ||
| Theorem | colleq1 44266 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴)) | ||
| Theorem | colleq2 44267 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝐴 = 𝐵 → (𝐹 Coll 𝐴) = (𝐹 Coll 𝐵)) | ||
| Theorem | nfcoll 44268 | Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹 Coll 𝐴) | ||
| Theorem | collexd 44269 | The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ V) | ||
| Theorem | cpcolld 44270* | Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
| Theorem | cpcoll2d 44271* | cpcolld 44270 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
| Theorem | grucollcld 44272 | A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) | ||
| Theorem | ismnu 44273* |
The hypothesis of this theorem defines a class M of sets that we
temporarily call "minimal universes", and which will turn out
in
grumnueq 44299 to be exactly Grothendicek universes.
Minimal universes are
sets which satisfy the predicate on 𝑦 in rr-groth 44311, except for the
𝑥
∈ 𝑦 clause.
A minimal universe is closed under subsets (mnussd 44275), powersets (mnupwd 44279), and an operation which is similar to a combination of collection and union (mnuop3d 44283), from which closure under pairing (mnuprd 44288), unions (mnuunid 44289), and function ranges (mnurnd 44295) can be deduced, from which equivalence with Grothendieck universes (grumnueq 44299) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) | ||
| Theorem | mnuop123d 44274* | Operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝒫 𝐴 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
| Theorem | mnussd 44275* | Minimal universes are closed under subsets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
| Theorem | mnuss2d 44276* | mnussd 44275 with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → ∃𝑥 ∈ 𝑈 𝐴 ⊆ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑈) | ||
| Theorem | mnu0eld 44277* | A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑈) | ||
| Theorem | mnuop23d 44278* | Second and third operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | ||
| Theorem | mnupwd 44279* | Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) | ||
| Theorem | mnusnd 44280* | Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴} ∈ 𝑈) | ||
| Theorem | mnuprssd 44281* | A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
| Theorem | mnuprss2d 44282* | Special case of mnuprssd 44281. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
| Theorem | mnuop3d 44283* | Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | ||
| Theorem | mnuprdlem1 44284* | Lemma for mnuprd 44288. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑤) | ||
| Theorem | mnuprdlem2 44285* | Lemma for mnuprd 44288. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑤) | ||
| Theorem | mnuprdlem3 44286* | Lemma for mnuprd 44288. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| ⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ Ⅎ𝑖𝜑 ⇒ ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) | ||
| Theorem | mnuprdlem4 44287* | Lemma for mnuprd 44288. General case. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
| Theorem | mnuprd 44288* | Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
| Theorem | mnuunid 44289* | Minimal universes are closed under union. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) | ||
| Theorem | mnuund 44290* | Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) | ||
| Theorem | mnutrcld 44291* | Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
| Theorem | mnutrd 44292* | Minimal universes are transitive. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) ⇒ ⊢ (𝜑 → Tr 𝑈) | ||
| Theorem | mnurndlem1 44293* | Lemma for mnurnd 44295. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) & ⊢ 𝐴 ∈ V & ⊢ (𝜑 → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝑤) | ||
| Theorem | mnurndlem2 44294* | Lemma for mnurnd 44295. Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) | ||
| Theorem | mnurnd 44295* | Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) | ||
| Theorem | mnugrud 44296* | Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) ⇒ ⊢ (𝜑 → 𝑈 ∈ Univ) | ||
| Theorem | grumnudlem 44297* | Lemma for grumnud 44298. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ 𝐹 = ({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) & ⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) & ⊢ ((ℎ ∈ (𝐹 Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
| Theorem | grumnud 44298* | Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
| ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝐺 ∈ Univ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
| Theorem | grumnueq 44299* | The class of Grothendieck universes is equal to the class of minimal universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ Univ = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | ||
| Theorem | expandan 44300 | Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜃)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |