Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eelT0 | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eelT0.1 | ⊢ (⊤ → 𝜑) |
eelT0.2 | ⊢ 𝜓 |
eelT0.3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
eelT0 | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eelT0.2 | . . 3 ⊢ 𝜓 | |
2 | eelT0.1 | . . . 4 ⊢ (⊤ → 𝜑) | |
3 | eelT0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
4 | 2, 3 | sylan 583 | . . 3 ⊢ ((⊤ ∧ 𝜓) → 𝜒) |
5 | 1, 4 | mpan2 690 | . 2 ⊢ (⊤ → 𝜒) |
6 | 5 | mptru 1545 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ⊤wtru 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |