Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptru | Structured version Visualization version GIF version |
Description: Eliminate ⊤ as an antecedent. A proposition implied by ⊤ is true. This is modus ponens ax-mp 5 when the minor hypothesis is ⊤ (which holds by tru 1547). (Contributed by Mario Carneiro, 13-Mar-2014.) |
Ref | Expression |
---|---|
mptru.1 | ⊢ (⊤ → 𝜑) |
Ref | Expression |
---|---|
mptru | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1547 | . 2 ⊢ ⊤ | |
2 | mptru.1 | . 2 ⊢ (⊤ → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Copyright terms: Public domain | W3C validator |