HomeHome Metamath Proof Explorer
Theorem List (p. 451 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 45001-45100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzefldiv2ALTV 45001 The floor of an even number divided by 2 is equal to the even number divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.)
(𝑁 ∈ Even → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
 
Theoremzofldiv2ALTV 45002 The floor of an odd numer divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.)
(𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))
 
TheoremoddflALTV 45003 Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 18-Jun-2020.)
(𝐾 ∈ Odd → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))
 
20.41.13.4  Alternate definitions using the "gcd" operation
 
Theoremiseven5 45004 The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.)
(𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 2))
 
Theoremisodd7 45005 The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.)
(𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 1))
 
Theoremdfeven5 45006 Alternate definition for even numbers. (Contributed by AV, 1-Jul-2020.)
Even = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 2}
 
Theoremdfodd7 45007 Alternate definition for odd numbers. (Contributed by AV, 1-Jul-2020.)
Odd = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 1}
 
Theoremgcd2odd1 45008 The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 45007 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023.)
(𝑍 ∈ Odd → (𝑍 gcd 2) = 1)
 
20.41.13.5  Theorems of part 5 revised
 
TheoremzneoALTV 45009 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Revised by AV, 16-Jun-2020.)
((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → 𝐴𝐵)
 
TheoremzeoALTV 45010 An integer is even or odd. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 16-Jun-2020.)
(𝑍 ∈ ℤ → (𝑍 ∈ Even ∨ 𝑍 ∈ Odd ))
 
Theoremzeo2ALTV 45011 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) (Revised by AV, 16-Jun-2020.)
(𝑍 ∈ ℤ → (𝑍 ∈ Even ↔ ¬ 𝑍 ∈ Odd ))
 
TheoremnneoALTV 45012 A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 19-Jun-2020.)
(𝑁 ∈ ℕ → (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd ))
 
TheoremnneoiALTV 45013 A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) (Revised by AV, 19-Jun-2020.)
𝑁 ∈ ℕ       (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd )
 
20.41.13.6  Theorems of part 6 revised
 
Theoremodd2np1ALTV 45014* An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by AV, 19-Jun-2020.)
(𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
 
Theoremoddm1evenALTV 45015 An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.)
(𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 − 1) ∈ Even ))
 
Theoremoddp1evenALTV 45016 An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.)
(𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 + 1) ∈ Even ))
 
TheoremoexpnegALTV 45017 The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Revised by AV, 19-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴𝑁) = -(𝐴𝑁))
 
Theoremoexpnegnz 45018 The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴𝑁) = -(𝐴𝑁))
 
Theorembits0ALTV 45019 Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.)
(𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd ))
 
Theorembits0eALTV 45020 The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.)
(𝑁 ∈ Even → ¬ 0 ∈ (bits‘𝑁))
 
Theorembits0oALTV 45021 The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.)
(𝑁 ∈ Odd → 0 ∈ (bits‘𝑁))
 
TheoremdivgcdoddALTV 45022 Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ))
 
TheoremopoeALTV 45023 The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )
 
TheoremopeoALTV 45024 The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )
 
TheoremomoeALTV 45025 The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴𝐵) ∈ Even )
 
TheoremomeoALTV 45026 The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴𝐵) ∈ Odd )
 
TheoremoddprmALTV 45027 A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.)
(𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd )
 
20.41.13.7  Theorems of AV's mathbox revised
 
Theorem0evenALTV 45028 0 is an even number. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 17-Jun-2020.)
0 ∈ Even
 
Theorem0noddALTV 45029 0 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 17-Jun-2020.)
0 ∉ Odd
 
Theorem1oddALTV 45030 1 is an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.)
1 ∈ Odd
 
Theorem1nevenALTV 45031 1 is not an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.)
1 ∉ Even
 
Theorem2evenALTV 45032 2 is an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.)
2 ∈ Even
 
Theorem2noddALTV 45033 2 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.)
2 ∉ Odd
 
Theoremnn0o1gt2ALTV 45034 An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.)
((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁))
 
TheoremnnoALTV 45035 An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.)
((𝑁 ∈ (ℤ‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ)
 
Theoremnn0oALTV 45036 An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Revised by AV, 21-Jun-2020.)
((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0)
 
Theoremnn0e 45037 An alternate characterization of an even nonnegative integer. (Contributed by AV, 22-Jun-2020.)
((𝑁 ∈ ℕ0𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ0)
 
Theoremnneven 45038 An alternate characterization of an even positive integer. (Contributed by AV, 5-Jun-2023.)
((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ)
 
Theoremnn0onn0exALTV 45039* For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.)
((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1))
 
Theoremnn0enn0exALTV 45040* For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.)
((𝑁 ∈ ℕ0𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚))
 
TheoremnnennexALTV 45041* For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.)
((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚))
 
Theoremnnpw2evenALTV 45042 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 20-Jun-2020.)
(𝑁 ∈ ℕ → (2↑𝑁) ∈ Even )
 
20.41.13.8  Additional theorems
 
Theoremepoo 45043 The sum of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.)
((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Odd )
 
Theorememoo 45044 The difference of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.)
((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴𝐵) ∈ Odd )
 
Theoremepee 45045 The sum of two even numbers is even. (Contributed by AV, 21-Jul-2020.)
((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Even )
 
Theorememee 45046 The difference of two even numbers is even. (Contributed by AV, 21-Jul-2020.)
((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴𝐵) ∈ Even )
 
Theoremevensumeven 45047 If a summand is even, the other summand is even iff the sum is even. (Contributed by AV, 21-Jul-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even ))
 
Theorem3odd 45048 3 is an odd number. (Contributed by AV, 20-Jul-2020.)
3 ∈ Odd
 
Theorem4even 45049 4 is an even number. (Contributed by AV, 23-Jul-2020.)
4 ∈ Even
 
Theorem5odd 45050 5 is an odd number. (Contributed by AV, 23-Jul-2020.)
5 ∈ Odd
 
Theorem6even 45051 6 is an even number. (Contributed by AV, 20-Jul-2020.)
6 ∈ Even
 
Theorem7odd 45052 7 is an odd number. (Contributed by AV, 20-Jul-2020.)
7 ∈ Odd
 
Theorem8even 45053 8 is an even number. (Contributed by AV, 23-Jul-2020.)
8 ∈ Even
 
Theoremevenprm2 45054 A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020.)
(𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2))
 
Theoremoddprmne2 45055 Every prime number not being 2 is an odd prime number. (Contributed by AV, 21-Aug-2021.)
((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) ↔ 𝑃 ∈ (ℙ ∖ {2}))
 
Theoremoddprmuzge3 45056 A prime number which is odd is an integer greater than or equal to 3. (Contributed by AV, 20-Jul-2020.) (Proof shortened by AV, 21-Aug-2021.)
((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) → 𝑃 ∈ (ℤ‘3))
 
Theoremevenltle 45057 If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.)
((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁)
 
Theoremodd2prm2 45058 If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.)
((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))
 
Theoremeven3prm2 45059 If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.)
((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
 
Theoremmogoldbblem 45060* Lemma for mogoldbb 45125. (Contributed by AV, 26-Dec-2021.)
(((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
 
20.41.13.9  Perfect Number Theorem (revised)
 
TheoremperfectALTVlem1 45061 Lemma for perfectALTV 45063. (Contributed by Mario Carneiro, 7-Jun-2016.) (Revised by AV, 1-Jul-2020.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐵 ∈ Odd )    &   (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))       (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
 
TheoremperfectALTVlem2 45062 Lemma for perfectALTV 45063. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐵 ∈ Odd )    &   (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))       (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1)))
 
TheoremperfectALTV 45063* The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) (Proof modification is discouraged.)
((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
 
20.41.14  Number theory (extension 2)
 
20.41.14.1  Fermat pseudoprimes

"In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem ... [which] states that if p is prime and a is coprime to p, then a^(p-1)-1 is divisible by p [see fermltl 16413].

For an integer a > 1, if a composite integer x divides a^(x-1)-1, then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. The false statement [see nfermltl2rev 45083] that all numbers that pass the Fermat primality test for base 2, are prime, is called the Chinese hypothesis.", see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime 45083, 29-May-2023.

 
Syntaxcfppr 45064 Extend class notation with the Fermat pseudoprimes.
class FPPr
 
Definitiondf-fppr 45065* Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.)
FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
 
Theoremfppr 45066* The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.)
(𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))})
 
Theoremfpprmod 45067* The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.)
(𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)})
 
Theoremfpprel 45068 A Fermat pseudoprime to the base 𝑁. (Contributed by AV, 30-May-2023.)
(𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1)))
 
Theoremfpprbasnn 45069 The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.)
(𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ)
 
Theoremfpprnn 45070 A Fermat pseudoprime to the base 𝑁 is a positive integer. (Contributed by AV, 30-May-2023.)
(𝑋 ∈ ( FPPr ‘𝑁) → 𝑋 ∈ ℕ)
 
Theoremfppr2odd 45071 A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.)
(𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
 
Theorem11t31e341 45072 341 is the product of 11 and 31. (Contributed by AV, 3-Jun-2023.)
(11 · 31) = 341
 
Theorem2exp340mod341 45073 Eight to the eighth power modulo nine is one. (Contributed by AV, 3-Jun-2023.)
((2↑340) mod 341) = 1
 
Theorem341fppr2 45074 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.)
341 ∈ ( FPPr ‘2)
 
Theorem4fppr1 45075 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.)
4 ∈ ( FPPr ‘1)
 
Theorem8exp8mod9 45076 Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.)
((8↑8) mod 9) = 1
 
Theorem9fppr8 45077 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.)
9 ∈ ( FPPr ‘8)
 
Theoremdfwppr 45078 Alternate definition of a weak pseudoprime 𝑋, which fulfils (𝑁𝑋)≡𝑁 (modulo 𝑋), see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime, 29-May-2023. (Contributed by AV, 31-May-2023.)
((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ) → (((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁𝑋) − 𝑁)))
 
Theoremfpprwppr 45079 A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.)
(𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋))
 
Theoremfpprwpprb 45080 An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.)
((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁𝑋) mod 𝑋) = (𝑁 mod 𝑋)))))
 
Theoremfpprel2 45081 An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.)
(𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
 
Theoremnfermltl8rev 45082 Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 45077) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.)
𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)
 
Theoremnfermltl2rev 45083 Fermat's little theorem with base 2 reversed is not generally true: There is an integer 𝑝 (for example 341, see 341fppr2 45074) so that "𝑝 is prime" does not follow from 2↑𝑝≡2 (mod 𝑝). (Contributed by AV, 3-Jun-2023.)
𝑝 ∈ (ℤ‘3) ¬ (((2↑𝑝) mod 𝑝) = (2 mod 𝑝) → 𝑝 ∈ ℙ)
 
Theoremnfermltlrev 45084* Fermat's little theorem reversed is not generally true: There are integers 𝑎 and 𝑝 so that "𝑝 is prime" does not follow from 𝑎𝑝𝑎 (mod 𝑝). (Contributed by AV, 3-Jun-2023.)
𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ‘3) ¬ (((𝑎𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ)
 
20.41.14.2  Goldbach's conjectures

According to Wikipedia ("Goldbach's conjecture", 20-Jul-2020, https://en.wikipedia.org/wiki/Goldbach's_conjecture) "Goldbach's conjecture ... states: Every even integer greater than 2 can be expressed as the sum of two primes." "It is also known as strong, even or binary Goldbach conjecture, to distinguish it from a weaker conjecture, known ... as the _Goldbach's weak conjecture_, the _odd Goldbach conjecture_, or the _ternary Goldbach conjecture_. This weak conjecture asserts that all odd numbers greater than 7 are the sum of three odd primes.". In the following, the terms "binary Goldbach conjecture" resp. "ternary Goldbach conjecture" will be used (following the terminology used in [Helfgott] p. 2), because there are a strong and a weak version of the ternary Goldbach conjecture. The term _Goldbach partition_ is used for a sum of two resp. three (odd) primes resulting in an even resp. odd number without further specialization.

Using the definition of a _Goldbach number_, which is "a positive even integer that can be expressed as the sum of two odd primes." (see df-gbe 45088), "another form of the statement of Goldbach's conjecture is that all even integers greater than 4 are Goldbach numbers.". 4 is not a Goldbach number, but it is the sum of two primes (2 and 2) nevertheless. sbgoldbalt 45121 shows that both forms are equivalent.

Hint (see Wikipedia, ("Goldbach's weak conjecture", 26-Jul-2020, https://en.wikipedia.org/wiki/Goldbach's_weak_conjecture 45121): "Some state the [weak] conjecture as 'Every odd number greater than 7 can be expressed as the sum of three odd primes.' This version excludes 7 = 2+2+3 because this requires the even prime 2. On odd numbers larger than 7 it is slightly stronger as it also excludes sums like 17 = 2+2+13, which are allowed in the other formulation. Helfgott's proof [see below] covers both versions of the conjecture. Like the other formulation, this one also immediately follows from Goldbach's strong conjecture." The definition of "weak odd Goldbach numbers", see df-gbow 45089, is the basis for "the other formulation", to formulate the weak ternary Goldbach conjecture. Alternately, df-gbo 45090 provides a definition of "(strong) odd Goldbach numbers" allowing for stating the strong ternary Goldbach conjecture. In literature, the term "Goldbach number" is used for "even Goldbach numbers" (according to definition df-gbe 45088), whereas there seems to be no explicit names and definitions for "odd Goldbach numbers". Since there are more theorems for "strong odd Goldbach numbers", "odd Goldbach numbers" refers to "strong odd Goldbach numbers" in the following. Otherwise, the term "weak odd Goldbach numbers" is explicitly used.

In contrast to the two versions of the binary Goldbach conjecture, the two versions of the ternary Goldbach conjecture are different not only for small numbers, but the strong version excludes cases like a=2+2+b in general, e.g., 23=2+2+19. Therefore, it seems to be more difficult to prove the strong ternary Goldbach conjecture than the weak version, because there are fewer possible partitions available.

Although the binary Goldbach conjecture is not proven yet, the ternary Goldbach conjecture was proven by Harald Helfgott in 2014 (the weak as well as the strong version, see Main theorem in [Helfgott] p. 2). It would be great if this proof can be formalized with Metamath (although it is not in the Metamath 100 list). This section should be a starting point for this.

The main problem will be to provide means to express the results from checking "small" numbers (performed with a computer): numbers up to about 4 x 10^18 for the binary Goldbach conjecture (see section 2 in [OeSilva] p. 2042, called "even Goldbach conjecture" here) resp. about 9 x 10^30 for the ternary Goldbach conjecture (see section 1.2.2 in [Helfgott] p. 4) or 8 x 10^26 (see theorem 2.1 in [OeSilva] p. 2057, called "odd Goldbach conjecture" here). Maybe each of the results must be provided as theorem, like 6gbe 45111, which would be quite a lot...

As proposed in the Google group discussion https://groups.google.com/g/metamath/c/DOXS4pg0h8w , this problem could be solved by using a reflective verifier or adding a concept of verification certificates that can be added into the Metamath databases as a reference. To sidestep the computation problem for now, the corresponding theorems are temporarily provided as axioms, see ax-bgbltosilva 45150, ax-hgprmladder 45154 and ax-tgoldbachgt 45151.

Summary/glossary:

TermSynonymsLabel fragment Definition/TheoremRemarks
binary Goldbach partition simply "Goldbach partition" A pair of primes (p,q) that sum to an even integer 2n=p+q See https://mathworld.wolfram.com/GoldbachPartition.html 45151
weak Goldbach partition gbpart A sum of two resp. three primes resulting in an even resp. odd number without further specialization.
Goldbach partition gbpart A sum of two resp. three odd primes resulting in an even resp. odd number without further specialization.
even Goldbach number simply "Goldbach number" gbe df-gbe 45088 A positive even integer that can be expressed as the sum of two odd primes. See https://mathworld.wolfram.com/GoldbachNumber.html 45088
weak odd Goldbach number gbow df-gbow 45089 A positive odd integer that can be expressed as the sum of three primes.
odd Goldbach number strong odd Goldbach number gbo df-gbo 45090 A positive odd integer that can be expressed as the sum of three odd primes.
strong binary Goldbach conjecture "the" Goldbach conjecture" [*1], even Goldbach conjecture [*2] sbgoldb Every even integer greater than 4 can be expressed as the sum of two odd primes. [*1] Equation (1) in [ApostolNT] p. 304 or [*2] introduction of [OeSilva] p. 2033.
binary Goldbach conjecture[*1][*3] strong Goldbach conjecture [*1], even Goldbach conjecture [*1], or simply "the Goldbach conjecture" [*1][*2] bgoldb, b sbgoldbb 45122 Every even integer greater than 2 can be expressed as the sum of two primes. See [*1] https://en.wikipedia.org/wiki/Goldbach's_conjecture 45122, [*2] statement in [ApostolNT] p. 9 or [*3] section 1.1 in [Helfgott] p. 2.
weak ternary Goldbach conjecture Goldbach's weak conjecture [*1], odd Goldbach conjecture [*1][*3], ternary Goldbach conjecture [*2], ternary Goldbach problem[*1], three-primes problem [*1][*2] wtgoldb, wt stgoldbwt 45116, sbgoldbwt 45117 Every odd number greater than 5 can be expressed as the sum of three primes. See [*1] https://en.wikipedia.org/wiki/Goldbach's_weak_conjecture, 45117 [*2] section 1.1 in [Helfgott] p. 2 or [*3] section 2.4 in [OeSilva] p. 2057.
ternary Goldbach conjecture strong ternary Goldbach conjecture, the "weak" Goldbach conjecture tgoldb, stgoldb, st sbgoldbst 45118 Every odd number greater than 7 can be expressed as the sum of three odd primes. See https://en.wikipedia.org/wiki/Goldbach's_weak_conjecture 45118, https://mathworld.wolfram.com/GoldbachConjecture.html 45118 or section 7.4 in [Helfgott] p. 71.
Goldbach's original conjecture (modern version) the "ternary" Goldbach conjecture mogoldb, m sbgoldbm 45124 Every integer greater than 5 can be written as the sum of three primes. See https://en.wikipedia.org/wiki/Goldbach's_weak_conjecture 45124, and https://mathworld.wolfram.com/GoldbachConjecture.html 45124
Goldbach's original conjecture (original version) ogoldb, o sbgoldbo 45127 Every integer greater than 2 can be written as the sum of three "primes" (considered the number 1 to be a "prime"). See https://en.wikipedia.org/wiki/Goldbach's_weak_conjecture 45127, and https://mathworld.wolfram.com/GoldbachConjecture.html 45127
 
Syntaxcgbe 45085 Extend the definition of a class to include the set of even numbers which have a Goldbach partition.
class GoldbachEven
 
Syntaxcgbow 45086 Extend the definition of a class to include the set of odd numbers which can be written as a sum of three primes.
class GoldbachOddW
 
Syntaxcgbo 45087 Extend the definition of a class to include the set of odd numbers which can be written as a sum of three odd primes.
class GoldbachOdd
 
Definitiondf-gbe 45088* Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as 𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.)
GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
 
Definitiondf-gbow 45089* Define the set of weak odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three primes. By this definition, the weak ternary Goldbach conjecture can be expressed as 𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ). (Contributed by AV, 14-Jun-2020.)
GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
 
Definitiondf-gbo 45090* Define the set of (strong) odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three odd primes. By this definition, the strong ternary Goldbach conjecture can be expressed as 𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ). (Contributed by AV, 26-Jul-2020.)
GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
 
Theoremisgbe 45091* The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.)
(𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
 
Theoremisgbow 45092* The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.)
(𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
 
Theoremisgbo 45093* The predicate "is an odd Goldbach number". An odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020.)
(𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))))
 
Theoremgbeeven 45094 An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.)
(𝑍 ∈ GoldbachEven → 𝑍 ∈ Even )
 
Theoremgbowodd 45095 A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020.)
(𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd )
 
Theoremgbogbow 45096 A (strong) odd Goldbach number is a weak Goldbach number. (Contributed by AV, 26-Jul-2020.)
(𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW )
 
Theoremgboodd 45097 An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.)
(𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd )
 
Theoremgbepos 45098 Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.)
(𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ)
 
Theoremgbowpos 45099 Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020.)
(𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ)
 
Theoremgbopos 45100 Any odd Goldbach number is positive. (Contributed by AV, 26-Jul-2020.)
(𝑍 ∈ GoldbachOdd → 𝑍 ∈ ℕ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >