| Metamath
Proof Explorer Theorem List (p. 451 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | permaxun 45001* | The Axiom of Union ax-un 7711 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅𝑦) | ||
| Theorem | permaxinf2lem 45002* | Lemma for permaxinf2 45003. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) & ⊢ 𝑍 = (rec((𝑣 ∈ V ↦ (◡𝐹‘((𝐹‘𝑣) ∪ {𝑣}))), (◡𝐹‘∅)) “ ω) ⇒ ⊢ ∃𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) | ||
| Theorem | permaxinf2 45003* | The Axiom of Infinity ax-inf2 9594 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) | ||
| Theorem | permac8prim 45004* | The Axiom of Choice ac8prim 44981 holds in permutation models. Part of Exercise II.9.3 of [Kunen2] p. 149. Note that ax-ac 10412 requires Regularity for its derivation from the usual Axiom of Choice and does not necessarily hold in permutation models. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ((∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ∧ ∀𝑧∀𝑤((𝑧𝑅𝑥 ∧ 𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)))) → ∃𝑦∀𝑧(𝑧𝑅𝑥 → ∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤))) | ||
| Theorem | nregmodelf1o 45005 | Define a permutation 𝐹 used to produce a model in which ax-reg 9545 is false. The permutation swaps ∅ and {∅} and leaves the rest of 𝑉 fixed. This is an example given after Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) ⇒ ⊢ 𝐹:V–1-1-onto→V | ||
| Theorem | nregmodellem 45006 | Lemma for nregmodel 45007. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (𝑥𝑅∅ ↔ 𝑥 ∈ {∅}) | ||
| Theorem | nregmodel 45007* | The Axiom of Regularity ax-reg 9545 is false in the permutation model defined from 𝐹. Since the other axioms of ZFC hold in all permutation models (permaxext 44995 through permac8prim 45004), we can conclude that Regularity does not follow from those axioms, assuming ZFC is consistent. (If we could prove Regularity from the other axioms, we could prove it in the permutation model and thus obtain a contradiction with this theorem.) Since we also know that Regularity is consistent with the other axioms (wfaxext 44983 through wfac8prim 44992), Regularity is neither provable nor disprovable from the other axioms; i.e., it is independent of them. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) | ||
| Theorem | nregmodelaxext 45008* | The Axiom of Extensionality ax-ext 2701 is true in the permutation model defined from 𝐹. This theorem is an immediate consequence of the fact that ax-ext 2701 holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) | ||
| Theorem | evth2f 45009* | A version of evth2 24859 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐹 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑋 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) | ||
| Theorem | elunif 45010* | A version of eluni 4874 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | ||
| Theorem | rzalf 45011 | A version of rzal 4472 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥 𝐴 = ∅ ⇒ ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | fvelrnbf 45012 | A version of fvelrnb 6921 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) | ||
| Theorem | rfcnpre1 45013 | If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐽) | ||
| Theorem | ubelsupr 45014* | If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 = sup(𝐴, ℝ, < )) | ||
| Theorem | fsumcnf 45015* | A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | mulltgt0 45016 | The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0) | ||
| Theorem | rspcegf 45017 | A version of rspcev 3588 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | rabexgf 45018 | A version of rabexg 5292 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | fcnre 45019 | A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) | ||
| Theorem | sumsnd 45020* | A sum of a singleton is the term. The deduction version of sumsn 15712. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → Ⅎ𝑘𝐵) & ⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) | ||
| Theorem | evthf 45021* | A version of evth 24858 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐹 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑋 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑦) ≤ (𝐹‘𝑥)) | ||
| Theorem | cnfex 45022 | The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) | ||
| Theorem | fnchoice 45023* | For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝐴 ∈ Fin → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | ||
| Theorem | refsumcn 45024* | A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 24761 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | rfcnpre2 45025 | If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐽) | ||
| Theorem | cncmpmax 45026* | When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑇 ≠ ∅) ⇒ ⊢ (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) | ||
| Theorem | rfcnpre3 45027* | If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐴 = {𝑡 ∈ 𝑇 ∣ 𝐵 ≤ (𝐹‘𝑡)} & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | rfcnpre4 45028* | If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐴 = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ 𝐵} & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | sumpair 45029* | Sum of two distinct complex values. The class expression for 𝐴 and 𝐵 normally contain free variable 𝑘 to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → Ⅎ𝑘𝐷) & ⊢ (𝜑 → Ⅎ𝑘𝐸) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) | ||
| Theorem | rfcnnnub 45030* | Given a real continuous function 𝐹 defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝑇 ≠ ∅) & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) | ||
| Theorem | refsum2cnlem1 45031* | This is the core Lemma for refsum2cn 45032: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺)) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | refsum2cn 45032* | The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | adantlllr 45033 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | 3adantlr3 45034 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜏) | ||
| Theorem | 3adantll2 45035 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | 3adantll3 45036 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜂) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | ssnel 45037 | If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐴) | ||
| Theorem | sncldre 45038 | A singleton is closed w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ ℝ → {𝐴} ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | n0p 45039 | A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝) | ||
| Theorem | pm2.65ni 45040 | Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (¬ 𝜑 → 𝜓) & ⊢ (¬ 𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜑 | ||
| Theorem | iuneq2df 45041 | Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | nnfoctb 45042* | There exists a mapping from ℕ onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝐴) | ||
| Theorem | elpwinss 45043 | An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) | ||
| Theorem | unidmex 45044 | If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝑋 = ∪ dom 𝐹 ⇒ ⊢ (𝜑 → 𝑋 ∈ V) | ||
| Theorem | ndisj2 45045* | A non-disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) | ||
| Theorem | zenom 45046 | The set of integer numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ℤ ≈ ω | ||
| Theorem | uzwo4 45047* | Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑗𝜓 & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓))) | ||
| Theorem | unisn0 45048 | The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ∪ {∅} = ∅ | ||
| Theorem | ssin0 45049 | If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) | ||
| Theorem | inabs3 45050 | Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) | ||
| Theorem | pwpwuni 45051 | Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) | ||
| Theorem | disjiun2 45052* | In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐸) ⇒ ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸) = ∅) | ||
| Theorem | 0pwfi 45053 | The empty set is in any power set, and it's finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) | ||
| Theorem | ssinss2d 45054 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
| Theorem | zct 45055 | The set of integer numbers is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ℤ ≼ ω | ||
| Theorem | pwfin0 45056 | A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ | ||
| Theorem | uzct 45057 | An upper integer set is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) ⇒ ⊢ 𝑍 ≼ ω | ||
| Theorem | iunxsnf 45058* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 | ||
| Theorem | fiiuncl 45059* | If a set is closed under the union of two sets, then it is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷) → (𝑦 ∪ 𝑧) ∈ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷) | ||
| Theorem | iunp1 45060* | The addition of the next set to a union indexed by a finite set of sequential integers. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∪ 𝑘 ∈ (𝑀...𝑁)𝐴 ∪ 𝐵)) | ||
| Theorem | fiunicl 45061* | If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | ixpeq2d 45062 | Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | disjxp1 45063* | The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 (𝐵 × 𝐶)) | ||
| Theorem | disjsnxp 45064* | The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) | ||
| Theorem | eliind 45065* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐵) & ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐷) | ||
| Theorem | rspcef 45066 | Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | ixpssmapc 45067* | An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑m 𝐴)) | ||
| Theorem | elintd 45068* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) | ||
| Theorem | ssdf 45069* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | brneqtrd 45070 | Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → ¬ 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) | ||
| Theorem | ssnct 45071 | A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → ¬ 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ≼ ω) | ||
| Theorem | ssuniint 45072* | Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) | ||
| Theorem | elintdv 45073* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) | ||
| Theorem | ssd 45074* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | ralimralim 45075 | Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) | ||
| Theorem | snelmap 45076 | Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → 𝑥 ∈ 𝐵) | ||
| Theorem | xrnmnfpnf 45077 | An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ -∞) ⇒ ⊢ (𝜑 → 𝐴 = +∞) | ||
| Theorem | nelrnmpt 45078* | Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) | ||
| Theorem | iuneq1i 45079 | Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 | ||
| Theorem | nssrex 45080* | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
| Theorem | ssinc 45081* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑁)) | ||
| Theorem | ssdec 45082* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ⊆ (𝐹‘𝑀)) | ||
| Theorem | elixpconstg 45083* | Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) | ||
| Theorem | iineq1d 45084* | Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | metpsmet 45085 | A metric is a pseudometric. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | ||
| Theorem | ixpssixp 45086 | Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | ballss3 45087* | A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) | ||
| Theorem | iunincfi 45088* | Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ (𝑀...𝑁)(𝐹‘𝑛) = (𝐹‘𝑁)) | ||
| Theorem | nsstr 45089 | If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) | ||
| Theorem | rexanuz3 45090* | Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) & ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) & ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) | ||
| Theorem | cbvmpo2 45091* | Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑤𝐴 & ⊢ Ⅎ𝑤𝐶 & ⊢ Ⅎ𝑦𝐸 & ⊢ (𝑦 = 𝑤 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐸) | ||
| Theorem | cbvmpo1 45092* | Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) | ||
| Theorem | eliuniin 45093* | Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐴 = ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ⇒ ⊢ (𝑍 ∈ 𝑉 → (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷)) | ||
| Theorem | ssabf 45094 | Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | ||
| Theorem | pssnssi 45095 | A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐴 ⊊ 𝐵 ⇒ ⊢ ¬ 𝐵 ⊆ 𝐴 | ||
| Theorem | rabidim2 45096 | Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) | ||
| Theorem | eluni2f 45097* | Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) | ||
| Theorem | eliin2f 45098* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | ||
| Theorem | nssd 45099 | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 ⊆ 𝐵) | ||
| Theorem | iineq12dv 45100* | Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |