| Metamath
Proof Explorer Theorem List (p. 451 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | brpermmodelcnv 45001 | Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) | ||
| Theorem | permaxext 45002* | The Axiom of Extensionality ax-ext 2702 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) | ||
| Theorem | permaxrep 45003* |
The Axiom of Replacement ax-rep 5237 holds in permutation models. Part
of Exercise II.9.2 of [Kunen2] p. 148.
Note that, to prove that an instance of Replacement holds in the model, 𝜑 would need have all instances of ∈ replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Replacement holds. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))) | ||
| Theorem | permaxsep 45004* |
The Axiom of Separation ax-sep 5254 holds in permutation models. Part of
Exercise II.9.2 of [Kunen2] p. 148.
Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of ∈ replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑦∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) | ||
| Theorem | permaxnul 45005* | The Null Set Axiom ax-nul 5264 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑥∀𝑦 ¬ 𝑦𝑅𝑥 | ||
| Theorem | permaxpow 45006* | The Axiom of Power Sets ax-pow 5323 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅𝑦) | ||
| Theorem | permaxpr 45007* | The Axiom of Pairing ax-pr 5390 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅𝑧) | ||
| Theorem | permaxun 45008* | The Axiom of Union ax-un 7714 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅𝑦) | ||
| Theorem | permaxinf2lem 45009* | Lemma for permaxinf2 45010. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) & ⊢ 𝑍 = (rec((𝑣 ∈ V ↦ (◡𝐹‘((𝐹‘𝑣) ∪ {𝑣}))), (◡𝐹‘∅)) “ ω) ⇒ ⊢ ∃𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) | ||
| Theorem | permaxinf2 45010* | The Axiom of Infinity ax-inf2 9601 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) | ||
| Theorem | permac8prim 45011* | The Axiom of Choice ac8prim 44988 holds in permutation models. Part of Exercise II.9.3 of [Kunen2] p. 149. Note that ax-ac 10419 requires Regularity for its derivation from the usual Axiom of Choice and does not necessarily hold in permutation models. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ((∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ∧ ∀𝑧∀𝑤((𝑧𝑅𝑥 ∧ 𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)))) → ∃𝑦∀𝑧(𝑧𝑅𝑥 → ∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤))) | ||
| Theorem | nregmodelf1o 45012 | Define a permutation 𝐹 used to produce a model in which ax-reg 9552 is false. The permutation swaps ∅ and {∅} and leaves the rest of 𝑉 fixed. This is an example given after Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) ⇒ ⊢ 𝐹:V–1-1-onto→V | ||
| Theorem | nregmodellem 45013 | Lemma for nregmodel 45014. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (𝑥𝑅∅ ↔ 𝑥 ∈ {∅}) | ||
| Theorem | nregmodel 45014* | The Axiom of Regularity ax-reg 9552 is false in the permutation model defined from 𝐹. Since the other axioms of ZFC hold in all permutation models (permaxext 45002 through permac8prim 45011), we can conclude that Regularity does not follow from those axioms, assuming ZFC is consistent. (If we could prove Regularity from the other axioms, we could prove it in the permutation model and thus obtain a contradiction with this theorem.) Since we also know that Regularity is consistent with the other axioms (wfaxext 44990 through wfac8prim 44999), Regularity is neither provable nor disprovable from the other axioms; i.e., it is independent of them. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) | ||
| Theorem | nregmodelaxext 45015* | The Axiom of Extensionality ax-ext 2702 is true in the permutation model defined from 𝐹. This theorem is an immediate consequence of the fact that ax-ext 2702 holds in all permutation models and is provided as an illustration. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) | ||
| Theorem | evth2f 45016* | A version of evth2 24866 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐹 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑋 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) | ||
| Theorem | elunif 45017* | A version of eluni 4877 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | ||
| Theorem | rzalf 45018 | A version of rzal 4475 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥 𝐴 = ∅ ⇒ ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | fvelrnbf 45019 | A version of fvelrnb 6924 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) | ||
| Theorem | rfcnpre1 45020 | If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐽) | ||
| Theorem | ubelsupr 45021* | If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 = sup(𝐴, ℝ, < )) | ||
| Theorem | fsumcnf 45022* | A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | mulltgt0 45023 | The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0) | ||
| Theorem | rspcegf 45024 | A version of rspcev 3591 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | rabexgf 45025 | A version of rabexg 5295 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | fcnre 45026 | A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) | ||
| Theorem | sumsnd 45027* | A sum of a singleton is the term. The deduction version of sumsn 15719. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → Ⅎ𝑘𝐵) & ⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) | ||
| Theorem | evthf 45028* | A version of evth 24865 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐹 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑋 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑦) ≤ (𝐹‘𝑥)) | ||
| Theorem | cnfex 45029 | The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) | ||
| Theorem | fnchoice 45030* | For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝐴 ∈ Fin → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | ||
| Theorem | refsumcn 45031* | A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 24768 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | rfcnpre2 45032 | If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐽) | ||
| Theorem | cncmpmax 45033* | When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑇 ≠ ∅) ⇒ ⊢ (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) | ||
| Theorem | rfcnpre3 45034* | If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐴 = {𝑡 ∈ 𝑇 ∣ 𝐵 ≤ (𝐹‘𝑡)} & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | rfcnpre4 45035* | If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐴 = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ 𝐵} & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | sumpair 45036* | Sum of two distinct complex values. The class expression for 𝐴 and 𝐵 normally contain free variable 𝑘 to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → Ⅎ𝑘𝐷) & ⊢ (𝜑 → Ⅎ𝑘𝐸) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) | ||
| Theorem | rfcnnnub 45037* | Given a real continuous function 𝐹 defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝑇 ≠ ∅) & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) | ||
| Theorem | refsum2cnlem1 45038* | This is the core Lemma for refsum2cn 45039: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺)) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | refsum2cn 45039* | The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | adantlllr 45040 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | 3adantlr3 45041 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜏) | ||
| Theorem | 3adantll2 45042 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | 3adantll3 45043 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜂) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | ssnel 45044 | If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐴) | ||
| Theorem | sncldre 45045 | A singleton is closed w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ ℝ → {𝐴} ∈ (Clsd‘(topGen‘ran (,)))) | ||
| Theorem | n0p 45046 | A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝) | ||
| Theorem | pm2.65ni 45047 | Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (¬ 𝜑 → 𝜓) & ⊢ (¬ 𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜑 | ||
| Theorem | iuneq2df 45048 | Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | nnfoctb 45049* | There exists a mapping from ℕ onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝐴) | ||
| Theorem | elpwinss 45050 | An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) | ||
| Theorem | unidmex 45051 | If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝑋 = ∪ dom 𝐹 ⇒ ⊢ (𝜑 → 𝑋 ∈ V) | ||
| Theorem | ndisj2 45052* | A non-disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) | ||
| Theorem | zenom 45053 | The set of integer numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ℤ ≈ ω | ||
| Theorem | uzwo4 45054* | Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑗𝜓 & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓))) | ||
| Theorem | unisn0 45055 | The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ∪ {∅} = ∅ | ||
| Theorem | ssin0 45056 | If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) | ||
| Theorem | inabs3 45057 | Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) | ||
| Theorem | pwpwuni 45058 | Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) | ||
| Theorem | disjiun2 45059* | In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐸) ⇒ ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸) = ∅) | ||
| Theorem | 0pwfi 45060 | The empty set is in any power set, and it's finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) | ||
| Theorem | ssinss2d 45061 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
| Theorem | zct 45062 | The set of integer numbers is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ℤ ≼ ω | ||
| Theorem | pwfin0 45063 | A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ | ||
| Theorem | uzct 45064 | An upper integer set is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) ⇒ ⊢ 𝑍 ≼ ω | ||
| Theorem | iunxsnf 45065* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 | ||
| Theorem | fiiuncl 45066* | If a set is closed under the union of two sets, then it is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷) → (𝑦 ∪ 𝑧) ∈ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷) | ||
| Theorem | iunp1 45067* | The addition of the next set to a union indexed by a finite set of sequential integers. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∪ 𝑘 ∈ (𝑀...𝑁)𝐴 ∪ 𝐵)) | ||
| Theorem | fiunicl 45068* | If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | ixpeq2d 45069 | Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | disjxp1 45070* | The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 (𝐵 × 𝐶)) | ||
| Theorem | disjsnxp 45071* | The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) | ||
| Theorem | eliind 45072* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐵) & ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐷) | ||
| Theorem | rspcef 45073 | Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | ixpssmapc 45074* | An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑m 𝐴)) | ||
| Theorem | elintd 45075* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) | ||
| Theorem | ssdf 45076* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | brneqtrd 45077 | Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → ¬ 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) | ||
| Theorem | ssnct 45078 | A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → ¬ 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ≼ ω) | ||
| Theorem | ssuniint 45079* | Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) | ||
| Theorem | elintdv 45080* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) | ||
| Theorem | ssd 45081* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | ralimralim 45082 | Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) | ||
| Theorem | snelmap 45083 | Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → 𝑥 ∈ 𝐵) | ||
| Theorem | xrnmnfpnf 45084 | An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ -∞) ⇒ ⊢ (𝜑 → 𝐴 = +∞) | ||
| Theorem | nelrnmpt 45085* | Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) | ||
| Theorem | iuneq1i 45086 | Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 | ||
| Theorem | nssrex 45087* | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
| Theorem | ssinc 45088* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑁)) | ||
| Theorem | ssdec 45089* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ⊆ (𝐹‘𝑀)) | ||
| Theorem | elixpconstg 45090* | Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) | ||
| Theorem | iineq1d 45091* | Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | metpsmet 45092 | A metric is a pseudometric. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | ||
| Theorem | ixpssixp 45093 | Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | ballss3 45094* | A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) | ||
| Theorem | iunincfi 45095* | Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ (𝑀...𝑁)(𝐹‘𝑛) = (𝐹‘𝑁)) | ||
| Theorem | nsstr 45096 | If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) | ||
| Theorem | rexanuz3 45097* | Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) & ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) & ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) | ||
| Theorem | cbvmpo2 45098* | Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑤𝐴 & ⊢ Ⅎ𝑤𝐶 & ⊢ Ⅎ𝑦𝐸 & ⊢ (𝑦 = 𝑤 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐸) | ||
| Theorem | cbvmpo1 45099* | Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) | ||
| Theorem | eliuniin 45100* | Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐴 = ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ⇒ ⊢ (𝑍 ∈ 𝑉 → (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |