Home | Metamath
Proof Explorer Theorem List (p. 451 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sqrtpwpw2p 45001 | The floor of the square root of 2 to the power of 2 to the power of a positive integer plus a bounded nonnegative integer. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1)))) | ||
Theorem | fmtnosqrt 45002 | The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.) |
⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) | ||
Theorem | fmtno0 45003 | The 0 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘0) = 3 | ||
Theorem | fmtno1 45004 | The 1 st Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘1) = 5 | ||
Theorem | fmtnorec2lem 45005* | Lemma for fmtnorec2 45006 (induction step). (Contributed by AV, 29-Jul-2021.) |
⊢ (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))) | ||
Theorem | fmtnorec2 45006* | The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 29-Jul-2021.) |
⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)) | ||
Theorem | fmtnodvds 45007 | Any Fermat number divides a greater Fermat number minus 2. Corollary of fmtnorec2 45006, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2)) | ||
Theorem | goldbachthlem1 45008 | Lemma 1 for goldbachth 45010. (Contributed by AV, 1-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) | ||
Theorem | goldbachthlem2 45009 | Lemma 2 for goldbachth 45010. (Contributed by AV, 1-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
Theorem | goldbachth 45010 | Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 1-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
Theorem | fmtnorec3 45011* | The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)))) | ||
Theorem | fmtnorec4 45012 | The fourth recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 31-Jul-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2)))) | ||
Theorem | fmtno2 45013 | The 2 nd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘2) = ;17 | ||
Theorem | fmtno3 45014 | The 3 rd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘3) = ;;257 | ||
Theorem | fmtno4 45015 | The 4 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘4) = ;;;;65537 | ||
Theorem | fmtno5lem1 45016 | Lemma 1 for fmtno5 45020. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;65536 · 6) = ;;;;;393216 | ||
Theorem | fmtno5lem2 45017 | Lemma 2 for fmtno5 45020. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;65536 · 5) = ;;;;;327680 | ||
Theorem | fmtno5lem3 45018 | Lemma 3 for fmtno5 45020. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;65536 · 3) = ;;;;;196608 | ||
Theorem | fmtno5lem4 45019 | Lemma 4 for fmtno5 45020. (Contributed by AV, 30-Jul-2021.) |
⊢ (;;;;65536↑2) = ;;;;;;;;;4294967296 | ||
Theorem | fmtno5 45020 | The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.) |
⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 | ||
Theorem | fmtno0prm 45021 | The 0 th Fermat number is a prime (first Fermat prime). (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘0) ∈ ℙ | ||
Theorem | fmtno1prm 45022 | The 1 st Fermat number is a prime (second Fermat prime). (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘1) ∈ ℙ | ||
Theorem | fmtno2prm 45023 | The 2 nd Fermat number is a prime (third Fermat prime). (Contributed by AV, 13-Jun-2021.) |
⊢ (FermatNo‘2) ∈ ℙ | ||
Theorem | 257prm 45024 | 257 is a prime number (the fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
⊢ ;;257 ∈ ℙ | ||
Theorem | fmtno3prm 45025 | The 3 rd Fermat number is a prime (fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
⊢ (FermatNo‘3) ∈ ℙ | ||
Theorem | odz2prm2pw 45026 | Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
Theorem | fmtnoprmfac1lem 45027 | Lemma for fmtnoprmfac1 45028: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
Theorem | fmtnoprmfac1 45028* | Divisor of Fermat number (special form of Euler's result, see fmtnofac1 45033): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
Theorem | fmtnoprmfac2lem1 45029 | Lemma for fmtnoprmfac2 45030. (Contributed by AV, 26-Jul-2021.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1) | ||
Theorem | fmtnoprmfac2 45030* | Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 45032): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
Theorem | fmtnofac2lem 45031* | Lemma for fmtnofac2 45032 (Induction step). (Contributed by AV, 30-Jul-2021.) |
⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((((𝑁 ∈ (ℤ≥‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ≥‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))) | ||
Theorem | fmtnofac2 45032* | Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 45033: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
Theorem | fmtnofac1 45033* |
Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of
Fermat Number/Euler's Result", 24-Jul-2021,
https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result):
"Let Fn be a Fermat number. Let
m be divisor of Fn. Then m is in the
form: k*2^(n+1)+1 where k is a positive integer." Here, however, k
must
be a nonnegative integer, because k must be 0 to represent 1 (which is a
divisor of Fn ).
Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 45032. (Contributed by AV, 30-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
Theorem | fmtno4sqrt 45034 | The floor of the square root of the fourth Fermat number is 256. (Contributed by AV, 28-Jul-2021.) |
⊢ (⌊‘(√‘(FermatNo‘4))) = ;;256 | ||
Theorem | fmtno4prmfac 45035 | If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | ||
Theorem | fmtno4prmfac193 45036 | If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) | ||
Theorem | fmtno4nprmfac193 45037 | 193 is not a (prime) factor of the fourth Fermat number. (Contributed by AV, 24-Jul-2021.) |
⊢ ¬ ;;193 ∥ (FermatNo‘4) | ||
Theorem | fmtno4prm 45038 | The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
⊢ (FermatNo‘4) ∈ ℙ | ||
Theorem | 65537prm 45039 | 65537 is a prime number (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
⊢ ;;;;65537 ∈ ℙ | ||
Theorem | fmtnofz04prm 45040 | The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.) |
⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) | ||
Theorem | fmtnole4prm 45041 | The first five Fermat numbers are prime. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 4) → (FermatNo‘𝑁) ∈ ℙ) | ||
Theorem | fmtno5faclem1 45042 | Lemma 1 for fmtno5fac 45045. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 | ||
Theorem | fmtno5faclem2 45043 | Lemma 2 for fmtno5fac 45045. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 | ||
Theorem | fmtno5faclem3 45044 | Lemma 3 for fmtno5fac 45045. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;;;;;402025020 + ;;;;;;;26801668) = ;;;;;;;;428826688 | ||
Theorem | fmtno5fac 45045 | The factorisation of the 5 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 22-Jul-2021.) |
⊢ (FermatNo‘5) = (;;;;;;6700417 · ;;641) | ||
Theorem | fmtno5nprm 45046 | The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021.) |
⊢ (FermatNo‘5) ∉ ℙ | ||
Theorem | prmdvdsfmtnof1lem1 45047* | Lemma 1 for prmdvdsfmtnof1 45050. (Contributed by AV, 3-Aug-2021.) |
⊢ 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) & ⊢ 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) ⇒ ⊢ ((𝐹 ∈ (ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))) | ||
Theorem | prmdvdsfmtnof1lem2 45048 | Lemma 2 for prmdvdsfmtnof1 45050. (Contributed by AV, 3-Aug-2021.) |
⊢ ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐹 = 𝐺)) | ||
Theorem | prmdvdsfmtnof 45049* | The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo⟶ℙ | ||
Theorem | prmdvdsfmtnof1 45050* | The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.) |
⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo–1-1→ℙ | ||
Theorem | prminf2 45051 | The set of prime numbers is infinite. The proof of this variant of prminf 16625 is based on Goldbach's theorem goldbachth 45010 (via prmdvdsfmtnof1 45050 and prmdvdsfmtnof1lem2 45048), see Wikipedia "Fermat number", 4-Aug-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties 45048. (Contributed by AV, 4-Aug-2021.) |
⊢ ℙ ∉ Fin | ||
Theorem | 2pwp1prm 45052* | For ((2↑𝑘) + 1) to be prime, 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.) |
⊢ ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) | ||
Theorem | 2pwp1prmfmtno 45053* | Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.) |
⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)) | ||
"In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2^n-1 for some integer n. They are named after Marin Mersenne ... If n is a composite number then so is 2^n-1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2^p-1 for some prime p.", see Wikipedia "Mersenne prime", 16-Aug-2021, https://en.wikipedia.org/wiki/Mersenne_prime. See also definition in [ApostolNT] p. 4. This means that if Mn = 2^n-1 is prime, than n must be prime, too, see mersenne 26384. The reverse direction is not generally valid: If p is prime, then Mp = 2^p-1 needs not be prime, e.g. M11 = 2047 = 23 x 89, see m11nprm 45064. This is an example of sgprmdvdsmersenne 45067, stating that if p with p = 3 modulo 4 (here 11) and q=2p+1 (here 23) are prime, then q divides Mp. "In number theory, a prime number p is a Sophie Germain prime if 2p+1 is also prime. The number 2p+1 associated with a Sophie Germain prime is called a safe prime.", see Wikipedia "Safe and Sophie Germain primes", 21-Aug-2021, https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes 45067. Hence, 11 is a Sophie Germain prime and 2x11+1=23 is its associated safe prime. By sfprmdvdsmersenne 45066, it is shown that if a safe prime q is congruent to 7 modulo 8, then it is a divisor of the Mersenne number with its matching Sophie Germain prime as exponent. The main result of this section, however, is the formal proof of a theorem of S. Ligh and L. Neal in "A note on Mersenne numbers", see lighneal 45074. | ||
Theorem | m2prm 45054 | The second Mersenne number M2 = 3 is a prime number. (Contributed by AV, 16-Aug-2021.) |
⊢ ((2↑2) − 1) ∈ ℙ | ||
Theorem | m3prm 45055 | The third Mersenne number M3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021.) |
⊢ ((2↑3) − 1) ∈ ℙ | ||
Theorem | flsqrt 45056 | A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2)))) | ||
Theorem | flsqrt5 45057 | The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.) |
⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((;25 ≤ 𝑋 ∧ 𝑋 < ;36) ↔ (⌊‘(√‘𝑋)) = 5)) | ||
Theorem | 3ndvds4 45058 | 3 does not divide 4. (Contributed by AV, 18-Aug-2021.) |
⊢ ¬ 3 ∥ 4 | ||
Theorem | 139prmALT 45059 | 139 is a prime number. In contrast to 139prm 16834, the proof of this theorem uses 3dvds2dec 16051 for checking the divisibility by 3. Although the proof using 3dvds2dec 16051 is longer (regarding size: 1849 characters compared with 1809 for 139prm 16834), the number of essential steps is smaller (301 compared with 327 for 139prm 16834). (Contributed by Mario Carneiro, 19-Feb-2014.) (Revised by AV, 18-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ;;139 ∈ ℙ | ||
Theorem | 31prm 45060 | 31 is a prime number. In contrast to 37prm 16831, the proof of this theorem is not based on the "blanket" prmlem2 16830, but on isprm7 16422. Although the checks for non-divisibility by the primes 7 to 23 are not needed, the proof is much longer (regarding size) than the proof of 37prm 16831 (1810 characters compared with 1213 for 37prm 16831). The number of essential steps, however, is much smaller (138 compared with 213 for 37prm 16831). (Contributed by AV, 17-Aug-2021.) (Proof modification is discouraged.) |
⊢ ;31 ∈ ℙ | ||
Theorem | m5prm 45061 | The fifth Mersenne number M5 = 31 is a prime number. (Contributed by AV, 17-Aug-2021.) |
⊢ ((2↑5) − 1) ∈ ℙ | ||
Theorem | 127prm 45062 | 127 is a prime number. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ ;;127 ∈ ℙ | ||
Theorem | m7prm 45063 | The seventh Mersenne number M7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021.) |
⊢ ((2↑7) − 1) ∈ ℙ | ||
Theorem | m11nprm 45064 | The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
⊢ ((2↑;11) − 1) = (;89 · ;23) | ||
Theorem | mod42tp1mod8 45065 | If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7) | ||
Theorem | sfprmdvdsmersenne 45066 | If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
Theorem | sgprmdvdsmersenne 45067 | If 𝑃 is a Sophie Germain prime (i.e. 𝑄 = ((2 · 𝑃) + 1) is also prime) with 𝑃≡3 (mod 4), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 3) ∧ (𝑄 = ((2 · 𝑃) + 1) ∧ 𝑄 ∈ ℙ)) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
Theorem | lighneallem1 45068 | Lemma 1 for lighneal 45074. (Contributed by AV, 11-Aug-2021.) |
⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) | ||
Theorem | lighneallem2 45069 | Lemma 2 for lighneal 45074. (Contributed by AV, 13-Aug-2021.) |
⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
Theorem | lighneallem3 45070 | Lemma 3 for lighneal 45074. (Contributed by AV, 11-Aug-2021.) |
⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
Theorem | lighneallem4a 45071 | Lemma 1 for lighneallem4 45073. (Contributed by AV, 16-Aug-2021.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘3) ∧ 𝑆 = (((𝐴↑𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆) | ||
Theorem | lighneallem4b 45072* | Lemma 2 for lighneallem4 45073. (Contributed by AV, 16-Aug-2021.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ∈ (ℤ≥‘2)) | ||
Theorem | lighneallem4 45073 | Lemma 3 for lighneal 45074. (Contributed by AV, 16-Aug-2021.) |
⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
Theorem | lighneal 45074 | If a power of a prime 𝑃 (i.e. 𝑃↑𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 26384 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.) |
⊢ (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ)) | ||
Theorem | modexp2m1d 45075 | The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 1 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = 1) | ||
Theorem | proththdlem 45076 | Lemma for proththd 45077. (Contributed by AV, 4-Jul-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)) | ||
Theorem | proththd 45077* | Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16616), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) & ⊢ (𝜑 → 𝐾 < (2↑𝑁)) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℙ) | ||
Theorem | 5tcu2e40 45078 | 5 times the cube of 2 is 40. (Contributed by AV, 4-Jul-2020.) |
⊢ (5 · (2↑3)) = ;40 | ||
Theorem | 3exp4mod41 45079 | 3 to the fourth power is -1 modulo 41. (Contributed by AV, 5-Jul-2020.) |
⊢ ((3↑4) mod ;41) = (-1 mod ;41) | ||
Theorem | 41prothprmlem1 45080 | Lemma 1 for 41prothprm 45082. (Contributed by AV, 4-Jul-2020.) |
⊢ 𝑃 = ;41 ⇒ ⊢ ((𝑃 − 1) / 2) = ;20 | ||
Theorem | 41prothprmlem2 45081 | Lemma 2 for 41prothprm 45082. (Contributed by AV, 5-Jul-2020.) |
⊢ 𝑃 = ;41 ⇒ ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) | ||
Theorem | 41prothprm 45082 | 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
⊢ 𝑃 = ;41 ⇒ ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) | ||
Theorem | quad1 45083* | A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
Theorem | requad01 45084* | A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷)) | ||
Theorem | requad1 45085* | A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
Theorem | requad2 45086* | A condition for a quadratic equation with real coefficients to have (exactly) two different real solutions. (Contributed by AV, 28-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥 ∈ 𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷)) | ||
Even and odd numbers can be characterized in many different ways. In the following, the definition of even and odd numbers is based on the fact that dividing an even number (resp. an odd number increased by 1) by 2 is an integer, see df-even 45089 and df-odd 45090. Alternate definitions resp. characterizations are provided in dfeven2 45112, dfeven3 45121, dfeven4 45101 and in dfodd2 45099, dfodd3 45113, dfodd4 45122, dfodd5 45123, dfodd6 45100. Each characterization can be useful (and used) in an appropriate context, e.g. dfodd6 45100 in opoeALTV 45146 and dfodd3 45113 in oddprmALTV 45150. Having a fixed definition for even and odd numbers, and alternate characterizations as theorems, advanced theorems about even and/or odd numbers can be expressed more explicitly, and the appropriate characterization can be chosen for their proof, which may become clearer and sometimes also shorter (see, for example, divgcdoddALTV 45145 and divgcdodd 16424). | ||
Syntax | ceven 45087 | Extend the definition of a class to include the set of even numbers. |
class Even | ||
Syntax | codd 45088 | Extend the definition of a class to include the set of odd numbers. |
class Odd | ||
Definition | df-even 45089 | Define the set of even numbers. (Contributed by AV, 14-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | ||
Definition | df-odd 45090 | Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | ||
Theorem | iseven 45091 | The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | ||
Theorem | isodd 45092 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | ||
Theorem | evenz 45093 | An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) | ||
Theorem | oddz 45094 | An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) | ||
Theorem | evendiv2z 45095 | The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) | ||
Theorem | oddp1div2z 45096 | The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) | ||
Theorem | oddm1div2z 45097 | The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ((𝑍 − 1) / 2) ∈ ℤ) | ||
Theorem | isodd2 45098 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 − 1) / 2) ∈ ℤ)) | ||
Theorem | dfodd2 45099 | Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} | ||
Theorem | dfodd6 45100* | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |