Home | Metamath
Proof Explorer Theorem List (p. 451 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | zefldiv2ALTV 45001 | The floor of an even number divided by 2 is equal to the even number divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ Even → (⌊‘(𝑁 / 2)) = (𝑁 / 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | zofldiv2ALTV 45002 | The floor of an odd numer divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oddflALTV 45003 | Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐾 ∈ Odd → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | iseven5 45004 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isodd7 45005 | The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 1)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dfeven5 45006 | Alternate definition for even numbers. (Contributed by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ Even = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 2} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dfodd7 45007 | Alternate definition for odd numbers. (Contributed by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ Odd = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 1} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gcd2odd1 45008 | The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 45007 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ Odd → (𝑍 gcd 2) = 1) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | zneoALTV 45009 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Revised by AV, 16-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → 𝐴 ≠ 𝐵) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | zeoALTV 45010 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 16-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ∨ 𝑍 ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | zeo2ALTV 45011 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) (Revised by AV, 16-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ↔ ¬ 𝑍 ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nneoALTV 45012 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nneoiALTV 45013 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | odd2np1ALTV 45014* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oddm1evenALTV 45015 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 − 1) ∈ Even )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oddp1evenALTV 45016 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 + 1) ∈ Even )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oexpnegALTV 45017 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Revised by AV, 19-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oexpnegnz 45018 | The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bits0ALTV 45019 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bits0eALTV 45020 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ Even → ¬ 0 ∈ (bits‘𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bits0oALTV 45021 | The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ Odd → 0 ∈ (bits‘𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | divgcdoddALTV 45022 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opoeALTV 45023 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opeoALTV 45024 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | omoeALTV 45025 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | omeoALTV 45026 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oddprmALTV 45027 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 0evenALTV 45028 | 0 is an even number. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 17-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 0 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 0noddALTV 45029 | 0 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 17-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 0 ∉ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 1oddALTV 45030 | 1 is an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 1 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 1nevenALTV 45031 | 1 is not an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 1 ∉ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 2evenALTV 45032 | 2 is an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 2 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 2noddALTV 45033 | 2 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 2 ∉ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0o1gt2ALTV 45034 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnoALTV 45035 | An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0oALTV 45036 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0e 45037 | An alternate characterization of an even nonnegative integer. (Contributed by AV, 22-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nneven 45038 | An alternate characterization of an even positive integer. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0onn0exALTV 45039* | For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0enn0exALTV 45040* | For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnennexALTV 45041* | For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnpw2evenALTV 45042 | 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | epoo 45043 | The sum of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | emoo 45044 | The difference of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | epee 45045 | The sum of two even numbers is even. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | emee 45046 | The difference of two even numbers is even. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evensumeven 45047 | If a summand is even, the other summand is even iff the sum is even. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 3odd 45048 | 3 is an odd number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 3 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 4even 45049 | 4 is an even number. (Contributed by AV, 23-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 4 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 5odd 45050 | 5 is an odd number. (Contributed by AV, 23-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 5 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 6even 45051 | 6 is an even number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 6 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 7odd 45052 | 7 is an odd number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 7 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 8even 45053 | 8 is an even number. (Contributed by AV, 23-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 8 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evenprm2 45054 | A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oddprmne2 45055 | Every prime number not being 2 is an odd prime number. (Contributed by AV, 21-Aug-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) ↔ 𝑃 ∈ (ℙ ∖ {2})) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oddprmuzge3 45056 | A prime number which is odd is an integer greater than or equal to 3. (Contributed by AV, 20-Jul-2020.) (Proof shortened by AV, 21-Aug-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) → 𝑃 ∈ (ℤ≥‘3)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evenltle 45057 | If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | odd2prm2 45058 | If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | even3prm2 45059 | If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mogoldbblem 45060* | Lemma for mogoldbb 45125. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | perfectALTVlem1 45061 | Lemma for perfectALTV 45063. (Contributed by Mario Carneiro, 7-Jun-2016.) (Revised by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | perfectALTVlem2 45062 | Lemma for perfectALTV 45063. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | perfectALTV 45063* | The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) (Proof modification is discouraged.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
"In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem ... [which] states that if p is prime and a is coprime to p, then a^(p-1)-1 is divisible by p [see fermltl 16413]. For an integer a > 1, if a composite integer x divides a^(x-1)-1, then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. The false statement [see nfermltl2rev 45083] that all numbers that pass the Fermat primality test for base 2, are prime, is called the Chinese hypothesis.", see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime 45083, 29-May-2023. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cfppr 45064 | Extend class notation with the Fermat pseudoprimes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class FPPr | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-fppr 45065* | Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ ∧ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fppr 45066* | The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprmod 45067* | The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprel 45068 | A Fermat pseudoprime to the base 𝑁. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprbasnn 45069 | The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprnn 45070 | A Fermat pseudoprime to the base 𝑁 is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑋 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fppr2odd 45071 | A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 11t31e341 45072 | 341 is the product of 11 and 31. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (;11 · ;31) = ;;341 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 2exp340mod341 45073 | Eight to the eighth power modulo nine is one. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((2↑;;340) mod ;;341) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 341fppr2 45074 | 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;;341 ∈ ( FPPr ‘2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 4fppr1 45075 | 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 4 ∈ ( FPPr ‘1) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 8exp8mod9 45076 | Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((8↑8) mod 9) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 9fppr8 45077 | 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 ∈ ( FPPr ‘8) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dfwppr 45078 | Alternate definition of a weak pseudoprime 𝑋, which fulfils (𝑁↑𝑋)≡𝑁 (modulo 𝑋), see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime, 29-May-2023. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ) → (((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁↑𝑋) − 𝑁))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprwppr 45079 | A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprwpprb 45080 | An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprel2 45081 | An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltl8rev 45082 | Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 45077) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltl2rev 45083 | Fermat's little theorem with base 2 reversed is not generally true: There is an integer 𝑝 (for example 341, see 341fppr2 45074) so that "𝑝 is prime" does not follow from 2↑𝑝≡2 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((2↑𝑝) mod 𝑝) = (2 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltlrev 45084* | Fermat's little theorem reversed is not generally true: There are integers 𝑎 and 𝑝 so that "𝑝 is prime" does not follow from 𝑎↑𝑝≡𝑎 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Wikipedia ("Goldbach's conjecture", 20-Jul-2020,
https://en.wikipedia.org/wiki/Goldbach's_conjecture) "Goldbach's
conjecture ... states: Every even integer greater than 2 can be expressed as
the sum of two primes." "It is also known as strong, even or binary Goldbach
conjecture, to distinguish it from a weaker conjecture, known ... as the
_Goldbach's weak conjecture_, the _odd Goldbach conjecture_, or the _ternary
Goldbach conjecture_. This weak conjecture asserts that all odd numbers
greater than 7 are the sum of three odd primes.". In the following, the
terms "binary Goldbach conjecture" resp. "ternary Goldbach conjecture" will
be used (following the terminology used in [Helfgott] p. 2), because there
are a strong and a weak version of the ternary Goldbach conjecture. The term
_Goldbach partition_ is used for a sum of two resp. three (odd) primes
resulting in an even resp. odd number without further specialization.
Summary/glossary:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbe 45085 | Extend the definition of a class to include the set of even numbers which have a Goldbach partition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbow 45086 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachOddW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbo 45087 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three odd primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbe 45088* | Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as ∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbow 45089* | Define the set of weak odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three primes. By this definition, the weak ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbo 45090* | Define the set of (strong) odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three odd primes. By this definition, the strong ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ). (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbe 45091* | The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbow 45092* | The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbo 45093* | The predicate "is an odd Goldbach number". An odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbeeven 45094 | An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowodd 45095 | A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbogbow 45096 | A (strong) odd Goldbach number is a weak Goldbach number. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gboodd 45097 | An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbepos 45098 | Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowpos 45099 | Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbopos 45100 | Any odd Goldbach number is positive. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ ℕ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |