HomeHome Metamath Proof Explorer
Theorem List (p. 451 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30171)
  Hilbert Space Explorer  Hilbert Space Explorer
(30172-31694)
  Users' Mathboxes  Users' Mathboxes
(31695-47852)
 

Theorem List for Metamath Proof Explorer - 45001-45100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrrxngp 45001 Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝐼 ∈ 𝑉 β†’ (ℝ^β€˜πΌ) ∈ NrmGrp)
 
Theoremrrxtps 45002 Generalized Euclidean real spaces are topological spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝐼 ∈ 𝑉 β†’ (ℝ^β€˜πΌ) ∈ TopSp)
 
Theoremrrxtopnfi 45003* The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐼 ∈ Fin)    β‡’   (πœ‘ β†’ (TopOpenβ€˜(ℝ^β€˜πΌ)) = (MetOpenβ€˜(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘“β€˜π‘˜) βˆ’ (π‘”β€˜π‘˜))↑2)))))
 
Theoremrrxtopon 45004 The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐽 = (TopOpenβ€˜(ℝ^β€˜πΌ))    β‡’   (𝐼 ∈ 𝑉 β†’ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜(ℝ^β€˜πΌ))))
 
Theoremrrxtop 45005 The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐽 = (TopOpenβ€˜(ℝ^β€˜πΌ))    β‡’   (𝐼 ∈ 𝑉 β†’ 𝐽 ∈ Top)
 
Theoremrrndistlt 45006* Given two points in the space of n-dimensional real numbers, if every component is closer than 𝐸 then the distance between the two points is less then ((βˆšβ€˜π‘›) Β· 𝐸). (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐼 ∈ Fin)    &   (πœ‘ β†’ 𝐼 β‰  βˆ…)    &   π‘ = (β™―β€˜πΌ)    &   (πœ‘ β†’ 𝑋 ∈ (ℝ ↑m 𝐼))    &   (πœ‘ β†’ π‘Œ ∈ (ℝ ↑m 𝐼))    &   ((πœ‘ ∧ 𝑖 ∈ 𝐼) β†’ (absβ€˜((π‘‹β€˜π‘–) βˆ’ (π‘Œβ€˜π‘–))) < 𝐸)    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π· = (distβ€˜(ℝ^β€˜πΌ))    β‡’   (πœ‘ β†’ (π‘‹π·π‘Œ) < ((βˆšβ€˜π‘) Β· 𝐸))
 
Theoremrrxtoponfi 45007 The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐽 = (TopOpenβ€˜(ℝ^β€˜πΌ))    β‡’   (𝐼 ∈ Fin β†’ 𝐽 ∈ (TopOnβ€˜(ℝ ↑m 𝐼)))
 
Theoremrrxunitopnfi 45008 The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝑋 ∈ Fin β†’ βˆͺ (TopOpenβ€˜(ℝ^β€˜π‘‹)) = (ℝ ↑m 𝑋))
 
Theoremrrxtopn0 45009 The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(TopOpenβ€˜(ℝ^β€˜βˆ…)) = 𝒫 {βˆ…}
 
Theoremqndenserrnbllem 45010* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐼 ∈ Fin)    &   (πœ‘ β†’ 𝐼 β‰  βˆ…)    &   (πœ‘ β†’ 𝑋 ∈ (ℝ ↑m 𝐼))    &   π· = (distβ€˜(ℝ^β€˜πΌ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ (β„š ↑m 𝐼)𝑦 ∈ (𝑋(ballβ€˜π·)𝐸))
 
Theoremqndenserrnbl 45011* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐼 ∈ Fin)    &   (πœ‘ β†’ 𝑋 ∈ (ℝ ↑m 𝐼))    &   π· = (distβ€˜(ℝ^β€˜πΌ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ (β„š ↑m 𝐼)𝑦 ∈ (𝑋(ballβ€˜π·)𝐸))
 
Theoremrrxtopn0b 45012 The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(TopOpenβ€˜(ℝ^β€˜βˆ…)) = {βˆ…, {βˆ…}}
 
Theoremqndenserrnopnlem 45013* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐼 ∈ Fin)    &   π½ = (TopOpenβ€˜(ℝ^β€˜πΌ))    &   (πœ‘ β†’ 𝑉 ∈ 𝐽)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   π· = (distβ€˜(ℝ^β€˜πΌ))    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ (β„š ↑m 𝐼)𝑦 ∈ 𝑉)
 
Theoremqndenserrnopn 45014* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐼 ∈ Fin)    &   π½ = (TopOpenβ€˜(ℝ^β€˜πΌ))    &   (πœ‘ β†’ 𝑉 ∈ 𝐽)    &   (πœ‘ β†’ 𝑉 β‰  βˆ…)    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ (β„š ↑m 𝐼)𝑦 ∈ 𝑉)
 
Theoremqndenserrn 45015 n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐼 ∈ Fin)    &   π½ = (TopOpenβ€˜(ℝ^β€˜πΌ))    β‡’   (πœ‘ β†’ ((clsβ€˜π½)β€˜(β„š ↑m 𝐼)) = (ℝ ↑m 𝐼))
 
Theoremrrxsnicc 45016* A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝐴 ∈ (ℝ ↑m 𝑋))    β‡’   (πœ‘ β†’ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,](π΄β€˜π‘˜)) = {𝐴})
 
Theoremrrnprjdstle 45017 The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐺:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐼 ∈ 𝑋)    &   π· = (distβ€˜(ℝ^β€˜π‘‹))    β‡’   (πœ‘ β†’ (absβ€˜((πΉβ€˜πΌ) βˆ’ (πΊβ€˜πΌ))) ≀ (𝐹𝐷𝐺))
 
Theoremrrndsmet 45018* 𝐷 is a metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π· = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝑋 (((π‘“β€˜π‘˜) βˆ’ (π‘”β€˜π‘˜))↑2)))    β‡’   (πœ‘ β†’ 𝐷 ∈ (Metβ€˜(ℝ ↑m 𝑋)))
 
Theoremrrndsxmet 45019* 𝐷 is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π· = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝑋 (((π‘“β€˜π‘˜) βˆ’ (π‘”β€˜π‘˜))↑2)))    β‡’   (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜(ℝ ↑m 𝑋)))
 
Theoremioorrnopnlem 45020* The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐹 ∈ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)(,)(π΅β€˜π‘–)))    &   π» = ran (𝑖 ∈ 𝑋 ↦ if(((π΅β€˜π‘–) βˆ’ (πΉβ€˜π‘–)) ≀ ((πΉβ€˜π‘–) βˆ’ (π΄β€˜π‘–)), ((π΅β€˜π‘–) βˆ’ (πΉβ€˜π‘–)), ((πΉβ€˜π‘–) βˆ’ (π΄β€˜π‘–))))    &   πΈ = inf(𝐻, ℝ, < )    &   π‘‰ = (𝐹(ballβ€˜π·)𝐸)    &   π· = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝑋 (((π‘“β€˜π‘˜) βˆ’ (π‘”β€˜π‘˜))↑2)))    β‡’   (πœ‘ β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜(ℝ^β€˜π‘‹))(𝐹 ∈ 𝑣 ∧ 𝑣 βŠ† X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)(,)(π΅β€˜π‘–))))
 
Theoremioorrnopn 45021* The indexed product of open intervals is an open set in (ℝ^β€˜π‘‹). (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)(,)(π΅β€˜π‘–)) ∈ (TopOpenβ€˜(ℝ^β€˜π‘‹)))
 
Theoremioorrnopnxrlem 45022* Given a point 𝐹 that belongs to an indexed product of (possibly unbounded) open intervals, then 𝐹 belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„*)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„*)    &   (πœ‘ β†’ 𝐹 ∈ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)(,)(π΅β€˜π‘–)))    &   πΏ = (𝑖 ∈ 𝑋 ↦ if((π΄β€˜π‘–) = -∞, ((πΉβ€˜π‘–) βˆ’ 1), (π΄β€˜π‘–)))    &   π‘… = (𝑖 ∈ 𝑋 ↦ if((π΅β€˜π‘–) = +∞, ((πΉβ€˜π‘–) + 1), (π΅β€˜π‘–)))    &   π‘‰ = X𝑖 ∈ 𝑋 ((πΏβ€˜π‘–)(,)(π‘…β€˜π‘–))    β‡’   (πœ‘ β†’ βˆƒπ‘£ ∈ (TopOpenβ€˜(ℝ^β€˜π‘‹))(𝐹 ∈ 𝑣 ∧ 𝑣 βŠ† X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)(,)(π΅β€˜π‘–))))
 
Theoremioorrnopnxr 45023* The indexed product of open intervals is an open set in (ℝ^β€˜π‘‹). Similar to ioorrnopn 45021 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„*)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„*)    β‡’   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)(,)(π΅β€˜π‘–)) ∈ (TopOpenβ€˜(ℝ^β€˜π‘‹)))
 
21.40.19  Basic measure theory
 
21.40.19.1  Οƒ-Algebras

Proofs for most of the theorems in section 111 of [Fremlin1]

 
Syntaxcsalg 45024 Extend class notation with the class of all sigma-algebras.
class SAlg
 
Definitiondf-salg 45025* Define the class of sigma-algebras. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
SAlg = {π‘₯ ∣ (βˆ… ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (βˆͺ π‘₯ βˆ– 𝑦) ∈ π‘₯ ∧ βˆ€π‘¦ ∈ 𝒫 π‘₯(𝑦 β‰Ό Ο‰ β†’ βˆͺ 𝑦 ∈ π‘₯))}
 
Syntaxcsalon 45026 Extend class notation with the class of sigma-algebras on a set.
class SalOn
 
Definitiondf-salon 45027* Define the set of sigma-algebra on a given set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
SalOn = (π‘₯ ∈ V ↦ {𝑠 ∈ SAlg ∣ βˆͺ 𝑠 = π‘₯})
 
Syntaxcsalgen 45028 Extend class notation with the class of sigma-algebra generator.
class SalGen
 
Definitiondf-salgen 45029* Define the sigma-algebra generated by a given set. Definition 111G (b) of [Fremlin1] p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 45057. The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex 45059. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Revised by Glauco Siliprandi, 1-Jan-2021.)
SalGen = (π‘₯ ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ π‘₯ ∧ π‘₯ βŠ† 𝑠)})
 
Theoremissal 45030* Express the predicate "𝑆 is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑆 ∈ 𝑉 β†’ (𝑆 ∈ SAlg ↔ (βˆ… ∈ 𝑆 ∧ βˆ€π‘¦ ∈ 𝑆 (βˆͺ 𝑆 βˆ– 𝑦) ∈ 𝑆 ∧ βˆ€π‘¦ ∈ 𝒫 𝑆(𝑦 β‰Ό Ο‰ β†’ βˆͺ 𝑦 ∈ 𝑆))))
 
Theorempwsal 45031 The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑋 ∈ 𝑉 β†’ 𝒫 𝑋 ∈ SAlg)
 
Theoremsalunicl 45032 SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝑇 ∈ 𝒫 𝑆)    &   (πœ‘ β†’ 𝑇 β‰Ό Ο‰)    β‡’   (πœ‘ β†’ βˆͺ 𝑇 ∈ 𝑆)
 
Theoremsaluncl 45033 The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) β†’ (𝐸 βˆͺ 𝐹) ∈ 𝑆)
 
Theoremprsal 45034 The pair of the empty set and the whole base is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑋 ∈ 𝑉 β†’ {βˆ…, 𝑋} ∈ SAlg)
 
Theoremsaldifcl 45035 The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) β†’ (βˆͺ 𝑆 βˆ– 𝐸) ∈ 𝑆)
 
Theorem0sal 45036 The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑆 ∈ SAlg β†’ βˆ… ∈ 𝑆)
 
Theoremsalgenval 45037* The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝑋 ∈ 𝑉 β†’ (SalGenβ€˜π‘‹) = ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)})
 
Theoremsaliunclf 45038 SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
β„²π‘˜πœ‘    &   β„²π‘˜π‘†    &   β„²π‘˜πΎ    &   (πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐾 β‰Ό Ο‰)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐾) β†’ 𝐸 ∈ 𝑆)    β‡’   (πœ‘ β†’ βˆͺ π‘˜ ∈ 𝐾 𝐸 ∈ 𝑆)
 
Theoremsaliuncl 45039* SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐾 β‰Ό Ο‰)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐾) β†’ 𝐸 ∈ 𝑆)    β‡’   (πœ‘ β†’ βˆͺ π‘˜ ∈ 𝐾 𝐸 ∈ 𝑆)
 
Theoremsalincl 45040 The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) β†’ (𝐸 ∩ 𝐹) ∈ 𝑆)
 
Theoremsaluni 45041 A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑆 ∈ SAlg β†’ βˆͺ 𝑆 ∈ 𝑆)
 
Theoremsaliinclf 45042 SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
β„²π‘˜πœ‘    &   β„²π‘˜π‘†    &   β„²π‘˜πΎ    &   (πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐾 β‰Ό Ο‰)    &   (πœ‘ β†’ 𝐾 β‰  βˆ…)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐾) β†’ 𝐸 ∈ 𝑆)    β‡’   (πœ‘ β†’ ∩ π‘˜ ∈ 𝐾 𝐸 ∈ 𝑆)
 
Theoremsaliincl 45043* SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐾 β‰Ό Ο‰)    &   (πœ‘ β†’ 𝐾 β‰  βˆ…)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐾) β†’ 𝐸 ∈ 𝑆)    β‡’   (πœ‘ β†’ ∩ π‘˜ ∈ 𝐾 𝐸 ∈ 𝑆)
 
Theoremsaldifcl2 45044 The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) β†’ (𝐸 βˆ– 𝐹) ∈ 𝑆)
 
Theoremintsaluni 45045* The union of an arbitrary intersection of sigma-algebras on the same set 𝑋, is 𝑋. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐺 βŠ† SAlg)    &   (πœ‘ β†’ 𝐺 β‰  βˆ…)    &   ((πœ‘ ∧ 𝑠 ∈ 𝐺) β†’ βˆͺ 𝑠 = 𝑋)    β‡’   (πœ‘ β†’ βˆͺ ∩ 𝐺 = 𝑋)
 
Theoremintsal 45046* The arbitrary intersection of sigma-algebra (on the same set 𝑋) is a sigma-algebra ( on the same set 𝑋, see intsaluni 45045). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐺 βŠ† SAlg)    &   (πœ‘ β†’ 𝐺 β‰  βˆ…)    &   ((πœ‘ ∧ 𝑠 ∈ 𝐺) β†’ βˆͺ 𝑠 = 𝑋)    β‡’   (πœ‘ β†’ ∩ 𝐺 ∈ SAlg)
 
Theoremsalgenn0 45047* The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝑋 ∈ 𝑉 β†’ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)} β‰  βˆ…)
 
Theoremsalgencl 45048 SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝑋 ∈ 𝑉 β†’ (SalGenβ€˜π‘‹) ∈ SAlg)
 
Theoremissald 45049* Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(πœ‘ β†’ 𝑆 ∈ 𝑉)    &   (πœ‘ β†’ βˆ… ∈ 𝑆)    &   π‘‹ = βˆͺ 𝑆    &   ((πœ‘ ∧ 𝑦 ∈ 𝑆) β†’ (𝑋 βˆ– 𝑦) ∈ 𝑆)    &   ((πœ‘ ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 β‰Ό Ο‰) β†’ βˆͺ 𝑦 ∈ 𝑆)    β‡’   (πœ‘ β†’ 𝑆 ∈ SAlg)
 
Theoremsalexct 45050* An example of nontrivial sigma-algebra: the collection of all subsets which either are countable or have countable complement. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   π‘† = {π‘₯ ∈ 𝒫 𝐴 ∣ (π‘₯ β‰Ό Ο‰ ∨ (𝐴 βˆ– π‘₯) β‰Ό Ο‰)}    β‡’   (πœ‘ β†’ 𝑆 ∈ SAlg)
 
Theoremsssalgen 45051 A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝑆 = (SalGenβ€˜π‘‹)    β‡’   (𝑋 ∈ 𝑉 β†’ 𝑋 βŠ† 𝑆)
 
Theoremsalgenss 45052 The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 45060, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   πΊ = (SalGenβ€˜π‘‹)    &   (πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ 𝑋)    β‡’   (πœ‘ β†’ 𝐺 βŠ† 𝑆)
 
Theoremsalgenuni 45053 The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   π‘† = (SalGenβ€˜π‘‹)    &   π‘ˆ = βˆͺ 𝑋    β‡’   (πœ‘ β†’ βˆͺ 𝑆 = π‘ˆ)
 
Theoremissalgend 45054* One side of dfsalgen2 45057. If a sigma-algebra on βˆͺ 𝑋 includes 𝑋 and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by 𝑋. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ 𝑋)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   ((πœ‘ ∧ (𝑦 ∈ SAlg ∧ βˆͺ 𝑦 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑦)) β†’ 𝑆 βŠ† 𝑦)    β‡’   (πœ‘ β†’ (SalGenβ€˜π‘‹) = 𝑆)
 
Theoremsalexct2 45055* An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 45050. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (0[,]2)    &   π‘† = {π‘₯ ∈ 𝒫 𝐴 ∣ (π‘₯ β‰Ό Ο‰ ∨ (𝐴 βˆ– π‘₯) β‰Ό Ο‰)}    &   π΅ = (0[,]1)    β‡’    Β¬ 𝐡 ∈ 𝑆
 
Theoremunisalgen 45056 The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   π‘† = (SalGenβ€˜π‘‹)    &   π‘ˆ = βˆͺ 𝑋    β‡’   (πœ‘ β†’ π‘ˆ ∈ 𝑆)
 
Theoremdfsalgen2 45057* Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    β‡’   (πœ‘ β†’ ((SalGenβ€˜π‘‹) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ βˆͺ 𝑆 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑆) ∧ βˆ€π‘¦ ∈ SAlg ((βˆͺ 𝑦 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑦) β†’ 𝑆 βŠ† 𝑦))))
 
Theoremsalexct3 45058* An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (0[,]2)    &   π‘† = {π‘₯ ∈ 𝒫 𝐴 ∣ (π‘₯ β‰Ό Ο‰ ∨ (𝐴 βˆ– π‘₯) β‰Ό Ο‰)}    &   π‘‹ = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})    β‡’   (𝑆 ∈ SAlg ∧ 𝑋 βŠ† 𝑆 ∧ Β¬ βˆͺ 𝑋 ∈ 𝑆)
 
Theoremsalgencntex 45059* This counterexample shows that df-salgen 45029 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (0[,]2)    &   π‘† = {π‘₯ ∈ 𝒫 𝐴 ∣ (π‘₯ β‰Ό Ο‰ ∨ (𝐴 βˆ– π‘₯) β‰Ό Ο‰)}    &   π΅ = (0[,]1)    &   π‘‡ = 𝒫 𝐡    &   πΆ = (𝑆 ∩ 𝑇)    &   π‘ = ∩ {𝑠 ∈ SAlg ∣ 𝐢 βŠ† 𝑠}    β‡’    Β¬ 𝑍 ∈ SAlg
 
Theoremsalgensscntex 45060* This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (0[,]2)    &   π‘† = {π‘₯ ∈ 𝒫 𝐴 ∣ (π‘₯ β‰Ό Ο‰ ∨ (𝐴 βˆ– π‘₯) β‰Ό Ο‰)}    &   π‘‹ = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})    &   πΊ = (SalGenβ€˜π‘‹)    β‡’   (𝑋 βŠ† 𝑆 ∧ 𝑆 ∈ SAlg ∧ Β¬ 𝐺 βŠ† 𝑆)
 
Theoremissalnnd 45061* Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝑆 ∈ 𝑉)    &   (πœ‘ β†’ βˆ… ∈ 𝑆)    &   π‘‹ = βˆͺ 𝑆    &   ((πœ‘ ∧ 𝑦 ∈ 𝑆) β†’ (𝑋 βˆ– 𝑦) ∈ 𝑆)    &   ((πœ‘ ∧ 𝑒:β„•βŸΆπ‘†) β†’ βˆͺ 𝑛 ∈ β„• (π‘’β€˜π‘›) ∈ 𝑆)    β‡’   (πœ‘ β†’ 𝑆 ∈ SAlg)
 
Theoremdmvolsal 45062 Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
dom vol ∈ SAlg
 
Theoremsaldifcld 45063 The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐸 ∈ 𝑆)    β‡’   (πœ‘ β†’ (βˆͺ 𝑆 βˆ– 𝐸) ∈ 𝑆)
 
Theoremsaluncld 45064 The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐸 ∈ 𝑆)    &   (πœ‘ β†’ 𝐹 ∈ 𝑆)    β‡’   (πœ‘ β†’ (𝐸 βˆͺ 𝐹) ∈ 𝑆)
 
Theoremsalgencld 45065 SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   π‘† = (SalGenβ€˜π‘‹)    β‡’   (πœ‘ β†’ 𝑆 ∈ SAlg)
 
Theorem0sald 45066 The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    β‡’   (πœ‘ β†’ βˆ… ∈ 𝑆)
 
Theoremiooborel 45067 An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐽 = (topGenβ€˜ran (,))    &   π΅ = (SalGenβ€˜π½)    β‡’   (𝐴(,)𝐢) ∈ 𝐡
 
Theoremsalincld 45068 The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐸 ∈ 𝑆)    &   (πœ‘ β†’ 𝐹 ∈ 𝑆)    β‡’   (πœ‘ β†’ (𝐸 ∩ 𝐹) ∈ 𝑆)
 
Theoremsalunid 45069 A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    β‡’   (πœ‘ β†’ βˆͺ 𝑆 ∈ 𝑆)
 
Theoremunisalgen2 45070 The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   π‘† = (SalGenβ€˜π΄)    β‡’   (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ 𝐴)
 
Theorembor1sal 45071 The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐽 = (topGenβ€˜ran (,))    &   π΅ = (SalGenβ€˜π½)    β‡’   π΅ ∈ SAlg
 
Theoremiocborel 45072 A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   π½ = (topGenβ€˜ran (,))    &   π΅ = (SalGenβ€˜π½)    β‡’   (πœ‘ β†’ (𝐴(,]𝐢) ∈ 𝐡)
 
Theoremsubsaliuncllem 45073* A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
β„²π‘¦πœ‘    &   (πœ‘ β†’ 𝑆 ∈ 𝑉)    &   πΊ = (𝑛 ∈ β„• ↦ {π‘₯ ∈ 𝑆 ∣ (πΉβ€˜π‘›) = (π‘₯ ∩ 𝐷)})    &   πΈ = (𝐻 ∘ 𝐺)    &   (πœ‘ β†’ 𝐻 Fn ran 𝐺)    &   (πœ‘ β†’ βˆ€π‘¦ ∈ ran 𝐺(π»β€˜π‘¦) ∈ 𝑦)    β‡’   (πœ‘ β†’ βˆƒπ‘’ ∈ (𝑆 ↑m β„•)βˆ€π‘› ∈ β„• (πΉβ€˜π‘›) = ((π‘’β€˜π‘›) ∩ 𝐷))
 
Theoremsubsaliuncl 45074* A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   π‘‡ = (𝑆 β†Ύt 𝐷)    &   (πœ‘ β†’ 𝐹:β„•βŸΆπ‘‡)    β‡’   (πœ‘ β†’ βˆͺ 𝑛 ∈ β„• (πΉβ€˜π‘›) ∈ 𝑇)
 
Theoremsubsalsal 45075 A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   π‘‡ = (𝑆 β†Ύt 𝐷)    β‡’   (πœ‘ β†’ 𝑇 ∈ SAlg)
 
Theoremsubsaluni 45076 A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐴 βŠ† βˆͺ 𝑆)    β‡’   (πœ‘ β†’ 𝐴 ∈ (𝑆 β†Ύt 𝐴))
 
Theoremsalrestss 45077 A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
(πœ‘ β†’ 𝑆 ∈ SAlg)    &   (πœ‘ β†’ 𝐸 ∈ 𝑆)    β‡’   (πœ‘ β†’ (𝑆 β†Ύt 𝐸) βŠ† 𝑆)
 
21.40.19.2  Sum of nonnegative extended reals
 
Syntaxcsumge0 45078 Extend class notation to include the sum of nonnegative extended reals.
class Ξ£^
 
Definitiondf-sumge0 45079* Define the arbitrary sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) $.
Ξ£^ = (π‘₯ ∈ V ↦ if(+∞ ∈ ran π‘₯, +∞, sup(ran (𝑦 ∈ (𝒫 dom π‘₯ ∩ Fin) ↦ Σ𝑀 ∈ 𝑦 (π‘₯β€˜π‘€)), ℝ*, < )))
 
Theoremsge0rnre 45080* When Ξ£^ is applied to nonnegative real numbers the range used in its definition is a subset of the reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,)+∞))    β‡’   (πœ‘ β†’ ran (π‘₯ ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ π‘₯ (πΉβ€˜π‘¦)) βŠ† ℝ)
 
Theoremfge0icoicc 45081 If 𝐹 maps to nonnegative reals, then 𝐹 maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,)+∞))    β‡’   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))
 
Theoremsge0val 45082* The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝑋 ∈ 𝑉 ∧ 𝐹:π‘‹βŸΆ(0[,]+∞)) β†’ (Ξ£^β€˜πΉ) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑀 ∈ 𝑦 (πΉβ€˜π‘€)), ℝ*, < )))
 
Theoremfge0npnf 45083 If 𝐹 maps to nonnegative reals, then +∞ is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,)+∞))    β‡’   (πœ‘ β†’ Β¬ +∞ ∈ ran 𝐹)
 
Theoremsge0rnn0 45084* The range used in the definition of Ξ£^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
ran (π‘₯ ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ π‘₯ (πΉβ€˜π‘¦)) β‰  βˆ…
 
Theoremsge0vald 45085* The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))    β‡’   (πœ‘ β†’ (Ξ£^β€˜πΉ) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (π‘₯ ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ π‘₯ (πΉβ€˜π‘¦)), ℝ*, < )))
 
Theoremfge0iccico 45086 A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))    &   (πœ‘ β†’ Β¬ +∞ ∈ ran 𝐹)    β‡’   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,)+∞))
 
Theoremgsumge0cl 45087 Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝐺 = (ℝ*𝑠 β†Ύs (0[,]+∞))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))    &   (πœ‘ β†’ 𝐹 finSupp 0)    β‡’   (πœ‘ β†’ (𝐺 Ξ£g 𝐹) ∈ (0[,]+∞))
 
Theoremsge0reval 45088* Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,)+∞))    β‡’   (πœ‘ β†’ (Ξ£^β€˜πΉ) = sup(ran (π‘₯ ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ π‘₯ (πΉβ€˜π‘¦)), ℝ*, < ))
 
Theoremsge0pnfval 45089 If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))    &   (πœ‘ β†’ +∞ ∈ ran 𝐹)    β‡’   (πœ‘ β†’ (Ξ£^β€˜πΉ) = +∞)
 
Theoremfge0iccre 45090 A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))    &   (πœ‘ β†’ Β¬ +∞ ∈ ran 𝐹)    β‡’   (πœ‘ β†’ 𝐹:π‘‹βŸΆβ„)
 
Theoremsge0z 45091* Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    β‡’   (πœ‘ β†’ (Ξ£^β€˜(π‘˜ ∈ 𝐴 ↦ 0)) = 0)
 
Theoremsge00 45092 The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(Ξ£^β€˜βˆ…) = 0
 
Theoremfsumlesge0 45093* Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,)+∞))    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ π‘Œ ∈ Fin)    β‡’   (πœ‘ β†’ Ξ£π‘₯ ∈ π‘Œ (πΉβ€˜π‘₯) ≀ (Ξ£^β€˜πΉ))
 
Theoremsge0revalmpt 45094* Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
β„²π‘₯πœ‘    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ (0[,)+∞))    β‡’   (πœ‘ β†’ (Ξ£^β€˜(π‘₯ ∈ 𝐴 ↦ 𝐡)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Ξ£π‘₯ ∈ 𝑦 𝐡), ℝ*, < ))
 
Theoremsge0sn 45095 A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:{𝐴}⟢(0[,]+∞))    β‡’   (πœ‘ β†’ (Ξ£^β€˜πΉ) = (πΉβ€˜π΄))
 
Theoremsge0tsms 45096 Ξ£^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝐺 = (ℝ*𝑠 β†Ύs (0[,]+∞))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))    β‡’   (πœ‘ β†’ (Ξ£^β€˜πΉ) ∈ (𝐺 tsums 𝐹))
 
Theoremsge0cl 45097 The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))    β‡’   (πœ‘ β†’ (Ξ£^β€˜πΉ) ∈ (0[,]+∞))
 
Theoremsge0f1o 45098* Re-index a nonnegative extended sum using a bijection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
β„²π‘˜πœ‘    &   β„²π‘›πœ‘    &   (π‘˜ = 𝐺 β†’ 𝐡 = 𝐷)    &   (πœ‘ β†’ 𝐢 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:𝐢–1-1-onto→𝐴)    &   ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) = 𝐺)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ (0[,]+∞))    β‡’   (πœ‘ β†’ (Ξ£^β€˜(π‘˜ ∈ 𝐴 ↦ 𝐡)) = (Ξ£^β€˜(𝑛 ∈ 𝐢 ↦ 𝐷)))
 
Theoremsge0snmpt 45099* A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐢 ∈ (0[,]+∞))    &   (π‘˜ = 𝐴 β†’ 𝐡 = 𝐢)    β‡’   (πœ‘ β†’ (Ξ£^β€˜(π‘˜ ∈ {𝐴} ↦ 𝐡)) = 𝐢)
 
Theoremsge0ge0 45100 The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))    β‡’   (πœ‘ β†’ 0 ≀ (Ξ£^β€˜πΉ))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47852
  Copyright terms: Public domain < Previous  Next >