![]() |
Metamath
Proof Explorer Theorem List (p. 451 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30171) |
![]() (30172-31694) |
![]() (31695-47852) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rrxngp 45001 | Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (πΌ β π β (β^βπΌ) β NrmGrp) | ||
Theorem | rrxtps 45002 | Generalized Euclidean real spaces are topological spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (πΌ β π β (β^βπΌ) β TopSp) | ||
Theorem | rrxtopnfi 45003* | The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β πΌ β Fin) β β’ (π β (TopOpenβ(β^βπΌ)) = (MetOpenβ(π β (β βm πΌ), π β (β βm πΌ) β¦ (ββΞ£π β πΌ (((πβπ) β (πβπ))β2))))) | ||
Theorem | rrxtopon 45004 | The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ π½ = (TopOpenβ(β^βπΌ)) β β’ (πΌ β π β π½ β (TopOnβ(Baseβ(β^βπΌ)))) | ||
Theorem | rrxtop 45005 | The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ π½ = (TopOpenβ(β^βπΌ)) β β’ (πΌ β π β π½ β Top) | ||
Theorem | rrndistlt 45006* | Given two points in the space of n-dimensional real numbers, if every component is closer than πΈ then the distance between the two points is less then ((ββπ) Β· πΈ). (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β πΌ β Fin) & β’ (π β πΌ β β ) & β’ π = (β―βπΌ) & β’ (π β π β (β βm πΌ)) & β’ (π β π β (β βm πΌ)) & β’ ((π β§ π β πΌ) β (absβ((πβπ) β (πβπ))) < πΈ) & β’ (π β πΈ β β+) & β’ π· = (distβ(β^βπΌ)) β β’ (π β (ππ·π) < ((ββπ) Β· πΈ)) | ||
Theorem | rrxtoponfi 45007 | The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ π½ = (TopOpenβ(β^βπΌ)) β β’ (πΌ β Fin β π½ β (TopOnβ(β βm πΌ))) | ||
Theorem | rrxunitopnfi 45008 | The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β Fin β βͺ (TopOpenβ(β^βπ)) = (β βm π)) | ||
Theorem | rrxtopn0 45009 | The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (TopOpenβ(β^ββ )) = π« {β } | ||
Theorem | qndenserrnbllem 45010* | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β πΌ β Fin) & β’ (π β πΌ β β ) & β’ (π β π β (β βm πΌ)) & β’ π· = (distβ(β^βπΌ)) & β’ (π β πΈ β β+) β β’ (π β βπ¦ β (β βm πΌ)π¦ β (π(ballβπ·)πΈ)) | ||
Theorem | qndenserrnbl 45011* | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β πΌ β Fin) & β’ (π β π β (β βm πΌ)) & β’ π· = (distβ(β^βπΌ)) & β’ (π β πΈ β β+) β β’ (π β βπ¦ β (β βm πΌ)π¦ β (π(ballβπ·)πΈ)) | ||
Theorem | rrxtopn0b 45012 | The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (TopOpenβ(β^ββ )) = {β , {β }} | ||
Theorem | qndenserrnopnlem 45013* | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β πΌ β Fin) & β’ π½ = (TopOpenβ(β^βπΌ)) & β’ (π β π β π½) & β’ (π β π β π) & β’ π· = (distβ(β^βπΌ)) β β’ (π β βπ¦ β (β βm πΌ)π¦ β π) | ||
Theorem | qndenserrnopn 45014* | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β πΌ β Fin) & β’ π½ = (TopOpenβ(β^βπΌ)) & β’ (π β π β π½) & β’ (π β π β β ) β β’ (π β βπ¦ β (β βm πΌ)π¦ β π) | ||
Theorem | qndenserrn 45015 | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β πΌ β Fin) & β’ π½ = (TopOpenβ(β^βπΌ)) β β’ (π β ((clsβπ½)β(β βm πΌ)) = (β βm πΌ)) | ||
Theorem | rrxsnicc 45016* | A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π΄ β (β βm π)) β β’ (π β Xπ β π ((π΄βπ)[,](π΄βπ)) = {π΄}) | ||
Theorem | rrnprjdstle 45017 | The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β Fin) & β’ (π β πΉ:πβΆβ) & β’ (π β πΊ:πβΆβ) & β’ (π β πΌ β π) & β’ π· = (distβ(β^βπ)) β β’ (π β (absβ((πΉβπΌ) β (πΊβπΌ))) β€ (πΉπ·πΊ)) | ||
Theorem | rrndsmet 45018* | π· is a metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β Fin) & β’ π· = (π β (β βm π), π β (β βm π) β¦ (ββΞ£π β π (((πβπ) β (πβπ))β2))) β β’ (π β π· β (Metβ(β βm π))) | ||
Theorem | rrndsxmet 45019* | π· is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β Fin) & β’ π· = (π β (β βm π), π β (β βm π) β¦ (ββΞ£π β π (((πβπ) β (πβπ))β2))) β β’ (π β π· β (βMetβ(β βm π))) | ||
Theorem | ioorrnopnlem 45020* | The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β Fin) & β’ (π β π β β ) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) & β’ (π β πΉ β Xπ β π ((π΄βπ)(,)(π΅βπ))) & β’ π» = ran (π β π β¦ if(((π΅βπ) β (πΉβπ)) β€ ((πΉβπ) β (π΄βπ)), ((π΅βπ) β (πΉβπ)), ((πΉβπ) β (π΄βπ)))) & β’ πΈ = inf(π», β, < ) & β’ π = (πΉ(ballβπ·)πΈ) & β’ π· = (π β (β βm π), π β (β βm π) β¦ (ββΞ£π β π (((πβπ) β (πβπ))β2))) β β’ (π β βπ£ β (TopOpenβ(β^βπ))(πΉ β π£ β§ π£ β Xπ β π ((π΄βπ)(,)(π΅βπ)))) | ||
Theorem | ioorrnopn 45021* | The indexed product of open intervals is an open set in (β^βπ). (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β Fin) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) β β’ (π β Xπ β π ((π΄βπ)(,)(π΅βπ)) β (TopOpenβ(β^βπ))) | ||
Theorem | ioorrnopnxrlem 45022* | Given a point πΉ that belongs to an indexed product of (possibly unbounded) open intervals, then πΉ belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β Fin) & β’ (π β π΄:πβΆβ*) & β’ (π β π΅:πβΆβ*) & β’ (π β πΉ β Xπ β π ((π΄βπ)(,)(π΅βπ))) & β’ πΏ = (π β π β¦ if((π΄βπ) = -β, ((πΉβπ) β 1), (π΄βπ))) & β’ π = (π β π β¦ if((π΅βπ) = +β, ((πΉβπ) + 1), (π΅βπ))) & β’ π = Xπ β π ((πΏβπ)(,)(π βπ)) β β’ (π β βπ£ β (TopOpenβ(β^βπ))(πΉ β π£ β§ π£ β Xπ β π ((π΄βπ)(,)(π΅βπ)))) | ||
Theorem | ioorrnopnxr 45023* | The indexed product of open intervals is an open set in (β^βπ). Similar to ioorrnopn 45021 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
β’ (π β π β Fin) & β’ (π β π΄:πβΆβ*) & β’ (π β π΅:πβΆβ*) β β’ (π β Xπ β π ((π΄βπ)(,)(π΅βπ)) β (TopOpenβ(β^βπ))) | ||
Proofs for most of the theorems in section 111 of [Fremlin1] | ||
Syntax | csalg 45024 | Extend class notation with the class of all sigma-algebras. |
class SAlg | ||
Definition | df-salg 45025* | Define the class of sigma-algebras. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ SAlg = {π₯ β£ (β β π₯ β§ βπ¦ β π₯ (βͺ π₯ β π¦) β π₯ β§ βπ¦ β π« π₯(π¦ βΌ Ο β βͺ π¦ β π₯))} | ||
Syntax | csalon 45026 | Extend class notation with the class of sigma-algebras on a set. |
class SalOn | ||
Definition | df-salon 45027* | Define the set of sigma-algebra on a given set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ SalOn = (π₯ β V β¦ {π β SAlg β£ βͺ π = π₯}) | ||
Syntax | csalgen 45028 | Extend class notation with the class of sigma-algebra generator. |
class SalGen | ||
Definition | df-salgen 45029* | Define the sigma-algebra generated by a given set. Definition 111G (b) of [Fremlin1] p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 45057. The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex 45059. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Revised by Glauco Siliprandi, 1-Jan-2021.) |
β’ SalGen = (π₯ β V β¦ β© {π β SAlg β£ (βͺ π = βͺ π₯ β§ π₯ β π )}) | ||
Theorem | issal 45030* | Express the predicate "π is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β (π β SAlg β (β β π β§ βπ¦ β π (βͺ π β π¦) β π β§ βπ¦ β π« π(π¦ βΌ Ο β βͺ π¦ β π)))) | ||
Theorem | pwsal 45031 | The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β π« π β SAlg) | ||
Theorem | salunicl 45032 | SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β SAlg) & β’ (π β π β π« π) & β’ (π β π βΌ Ο) β β’ (π β βͺ π β π) | ||
Theorem | saluncl 45033 | The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ ((π β SAlg β§ πΈ β π β§ πΉ β π) β (πΈ βͺ πΉ) β π) | ||
Theorem | prsal 45034 | The pair of the empty set and the whole base is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β {β , π} β SAlg) | ||
Theorem | saldifcl 45035 | The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ ((π β SAlg β§ πΈ β π) β (βͺ π β πΈ) β π) | ||
Theorem | 0sal 45036 | The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β SAlg β β β π) | ||
Theorem | salgenval 45037* | The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π β (SalGenβπ) = β© {π β SAlg β£ (βͺ π = βͺ π β§ π β π )}) | ||
Theorem | saliunclf 45038 | SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
β’ β²ππ & β’ β²ππ & β’ β²ππΎ & β’ (π β π β SAlg) & β’ (π β πΎ βΌ Ο) & β’ ((π β§ π β πΎ) β πΈ β π) β β’ (π β βͺ π β πΎ πΈ β π) | ||
Theorem | saliuncl 45039* | SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β SAlg) & β’ (π β πΎ βΌ Ο) & β’ ((π β§ π β πΎ) β πΈ β π) β β’ (π β βͺ π β πΎ πΈ β π) | ||
Theorem | salincl 45040 | The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ ((π β SAlg β§ πΈ β π β§ πΉ β π) β (πΈ β© πΉ) β π) | ||
Theorem | saluni 45041 | A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β SAlg β βͺ π β π) | ||
Theorem | saliinclf 45042 | SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
β’ β²ππ & β’ β²ππ & β’ β²ππΎ & β’ (π β π β SAlg) & β’ (π β πΎ βΌ Ο) & β’ (π β πΎ β β ) & β’ ((π β§ π β πΎ) β πΈ β π) β β’ (π β β© π β πΎ πΈ β π) | ||
Theorem | saliincl 45043* | SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β SAlg) & β’ (π β πΎ βΌ Ο) & β’ (π β πΎ β β ) & β’ ((π β§ π β πΎ) β πΈ β π) β β’ (π β β© π β πΎ πΈ β π) | ||
Theorem | saldifcl2 45044 | The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ ((π β SAlg β§ πΈ β π β§ πΉ β π) β (πΈ β πΉ) β π) | ||
Theorem | intsaluni 45045* | The union of an arbitrary intersection of sigma-algebras on the same set π, is π. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β πΊ β SAlg) & β’ (π β πΊ β β ) & β’ ((π β§ π β πΊ) β βͺ π = π) β β’ (π β βͺ β© πΊ = π) | ||
Theorem | intsal 45046* | The arbitrary intersection of sigma-algebra (on the same set π) is a sigma-algebra ( on the same set π, see intsaluni 45045). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β πΊ β SAlg) & β’ (π β πΊ β β ) & β’ ((π β§ π β πΊ) β βͺ π = π) β β’ (π β β© πΊ β SAlg) | ||
Theorem | salgenn0 45047* | The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π β {π β SAlg β£ (βͺ π = βͺ π β§ π β π )} β β ) | ||
Theorem | salgencl 45048 | SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π β (SalGenβπ) β SAlg) | ||
Theorem | issald 45049* | Sufficient condition to prove that π is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π β π) & β’ (π β β β π) & β’ π = βͺ π & β’ ((π β§ π¦ β π) β (π β π¦) β π) & β’ ((π β§ π¦ β π« π β§ π¦ βΌ Ο) β βͺ π¦ β π) β β’ (π β π β SAlg) | ||
Theorem | salexct 45050* | An example of nontrivial sigma-algebra: the collection of all subsets which either are countable or have countable complement. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π΄ β π) & β’ π = {π₯ β π« π΄ β£ (π₯ βΌ Ο β¨ (π΄ β π₯) βΌ Ο)} β β’ (π β π β SAlg) | ||
Theorem | sssalgen 45051 | A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ π = (SalGenβπ) β β’ (π β π β π β π) | ||
Theorem | salgenss 45052 | The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 45060, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π β π) & β’ πΊ = (SalGenβπ) & β’ (π β π β SAlg) & β’ (π β π β π) & β’ (π β βͺ π = βͺ π) β β’ (π β πΊ β π) | ||
Theorem | salgenuni 45053 | The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π β π) & β’ π = (SalGenβπ) & β’ π = βͺ π β β’ (π β βͺ π = π) | ||
Theorem | issalgend 45054* | One side of dfsalgen2 45057. If a sigma-algebra on βͺ π includes π and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by π. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π β π) & β’ (π β π β SAlg) & β’ (π β βͺ π = βͺ π) & β’ (π β π β π) & β’ ((π β§ (π¦ β SAlg β§ βͺ π¦ = βͺ π β§ π β π¦)) β π β π¦) β β’ (π β (SalGenβπ) = π) | ||
Theorem | salexct2 45055* | An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 45050. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ π΄ = (0[,]2) & β’ π = {π₯ β π« π΄ β£ (π₯ βΌ Ο β¨ (π΄ β π₯) βΌ Ο)} & β’ π΅ = (0[,]1) β β’ Β¬ π΅ β π | ||
Theorem | unisalgen 45056 | The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π β π) & β’ π = (SalGenβπ) & β’ π = βͺ π β β’ (π β π β π) | ||
Theorem | dfsalgen2 45057* | Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ (π β π β π) β β’ (π β ((SalGenβπ) = π β ((π β SAlg β§ βͺ π = βͺ π β§ π β π) β§ βπ¦ β SAlg ((βͺ π¦ = βͺ π β§ π β π¦) β π β π¦)))) | ||
Theorem | salexct3 45058* | An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ π΄ = (0[,]2) & β’ π = {π₯ β π« π΄ β£ (π₯ βΌ Ο β¨ (π΄ β π₯) βΌ Ο)} & β’ π = ran (π¦ β (0[,]1) β¦ {π¦}) β β’ (π β SAlg β§ π β π β§ Β¬ βͺ π β π) | ||
Theorem | salgencntex 45059* | This counterexample shows that df-salgen 45029 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ π΄ = (0[,]2) & β’ π = {π₯ β π« π΄ β£ (π₯ βΌ Ο β¨ (π΄ β π₯) βΌ Ο)} & β’ π΅ = (0[,]1) & β’ π = π« π΅ & β’ πΆ = (π β© π) & β’ π = β© {π β SAlg β£ πΆ β π } β β’ Β¬ π β SAlg | ||
Theorem | salgensscntex 45060* | This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
β’ π΄ = (0[,]2) & β’ π = {π₯ β π« π΄ β£ (π₯ βΌ Ο β¨ (π΄ β π₯) βΌ Ο)} & β’ π = ran (π¦ β (0[,]1) β¦ {π¦}) & β’ πΊ = (SalGenβπ) β β’ (π β π β§ π β SAlg β§ Β¬ πΊ β π) | ||
Theorem | issalnnd 45061* | Sufficient condition to prove that π is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
β’ (π β π β π) & β’ (π β β β π) & β’ π = βͺ π & β’ ((π β§ π¦ β π) β (π β π¦) β π) & β’ ((π β§ π:ββΆπ) β βͺ π β β (πβπ) β π) β β’ (π β π β SAlg) | ||
Theorem | dmvolsal 45062 | Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
β’ dom vol β SAlg | ||
Theorem | saldifcld 45063 | The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β SAlg) & β’ (π β πΈ β π) β β’ (π β (βͺ π β πΈ) β π) | ||
Theorem | saluncld 45064 | The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β SAlg) & β’ (π β πΈ β π) & β’ (π β πΉ β π) β β’ (π β (πΈ βͺ πΉ) β π) | ||
Theorem | salgencld 45065 | SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β π) & β’ π = (SalGenβπ) β β’ (π β π β SAlg) | ||
Theorem | 0sald 45066 | The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β SAlg) β β’ (π β β β π) | ||
Theorem | iooborel 45067 | An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ π½ = (topGenβran (,)) & β’ π΅ = (SalGenβπ½) β β’ (π΄(,)πΆ) β π΅ | ||
Theorem | salincld 45068 | The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β SAlg) & β’ (π β πΈ β π) & β’ (π β πΉ β π) β β’ (π β (πΈ β© πΉ) β π) | ||
Theorem | salunid 45069 | A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β SAlg) β β’ (π β βͺ π β π) | ||
Theorem | unisalgen2 45070 | The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π΄ β π) & β’ π = (SalGenβπ΄) β β’ (π β βͺ π = βͺ π΄) | ||
Theorem | bor1sal 45071 | The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ π½ = (topGenβran (,)) & β’ π΅ = (SalGenβπ½) β β’ π΅ β SAlg | ||
Theorem | iocborel 45072 | A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π΄ β β*) & β’ (π β πΆ β β) & β’ π½ = (topGenβran (,)) & β’ π΅ = (SalGenβπ½) β β’ (π β (π΄(,]πΆ) β π΅) | ||
Theorem | subsaliuncllem 45073* | A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ β²π¦π & β’ (π β π β π) & β’ πΊ = (π β β β¦ {π₯ β π β£ (πΉβπ) = (π₯ β© π·)}) & β’ πΈ = (π» β πΊ) & β’ (π β π» Fn ran πΊ) & β’ (π β βπ¦ β ran πΊ(π»βπ¦) β π¦) β β’ (π β βπ β (π βm β)βπ β β (πΉβπ) = ((πβπ) β© π·)) | ||
Theorem | subsaliuncl 45074* | A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β SAlg) & β’ (π β π· β π) & β’ π = (π βΎt π·) & β’ (π β πΉ:ββΆπ) β β’ (π β βͺ π β β (πΉβπ) β π) | ||
Theorem | subsalsal 45075 | A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β SAlg) & β’ (π β π· β π) & β’ π = (π βΎt π·) β β’ (π β π β SAlg) | ||
Theorem | subsaluni 45076 | A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
β’ (π β π β SAlg) & β’ (π β π΄ β βͺ π) β β’ (π β π΄ β (π βΎt π΄)) | ||
Theorem | salrestss 45077 | A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
β’ (π β π β SAlg) & β’ (π β πΈ β π) β β’ (π β (π βΎt πΈ) β π) | ||
Syntax | csumge0 45078 | Extend class notation to include the sum of nonnegative extended reals. |
class Ξ£^ | ||
Definition | df-sumge0 45079* | Define the arbitrary sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) $. |
β’ Ξ£^ = (π₯ β V β¦ if(+β β ran π₯, +β, sup(ran (π¦ β (π« dom π₯ β© Fin) β¦ Ξ£π€ β π¦ (π₯βπ€)), β*, < ))) | ||
Theorem | sge0rnre 45080* | When Ξ£^ is applied to nonnegative real numbers the range used in its definition is a subset of the reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β πΉ:πβΆ(0[,)+β)) β β’ (π β ran (π₯ β (π« π β© Fin) β¦ Ξ£π¦ β π₯ (πΉβπ¦)) β β) | ||
Theorem | fge0icoicc 45081 | If πΉ maps to nonnegative reals, then πΉ maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β πΉ:πβΆ(0[,)+β)) β β’ (π β πΉ:πβΆ(0[,]+β)) | ||
Theorem | sge0val 45082* | The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ ((π β π β§ πΉ:πβΆ(0[,]+β)) β (Ξ£^βπΉ) = if(+β β ran πΉ, +β, sup(ran (π¦ β (π« π β© Fin) β¦ Ξ£π€ β π¦ (πΉβπ€)), β*, < ))) | ||
Theorem | fge0npnf 45083 | If πΉ maps to nonnegative reals, then +β is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β πΉ:πβΆ(0[,)+β)) β β’ (π β Β¬ +β β ran πΉ) | ||
Theorem | sge0rnn0 45084* | The range used in the definition of Ξ£^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ ran (π₯ β (π« π β© Fin) β¦ Ξ£π¦ β π₯ (πΉβπ¦)) β β | ||
Theorem | sge0vald 45085* | The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β π) & β’ (π β πΉ:πβΆ(0[,]+β)) β β’ (π β (Ξ£^βπΉ) = if(+β β ran πΉ, +β, sup(ran (π₯ β (π« π β© Fin) β¦ Ξ£π¦ β π₯ (πΉβπ¦)), β*, < ))) | ||
Theorem | fge0iccico 45086 | A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β πΉ:πβΆ(0[,]+β)) & β’ (π β Β¬ +β β ran πΉ) β β’ (π β πΉ:πβΆ(0[,)+β)) | ||
Theorem | gsumge0cl 45087 | Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ πΊ = (β*π βΎs (0[,]+β)) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(0[,]+β)) & β’ (π β πΉ finSupp 0) β β’ (π β (πΊ Ξ£g πΉ) β (0[,]+β)) | ||
Theorem | sge0reval 45088* | Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β π) & β’ (π β πΉ:πβΆ(0[,)+β)) β β’ (π β (Ξ£^βπΉ) = sup(ran (π₯ β (π« π β© Fin) β¦ Ξ£π¦ β π₯ (πΉβπ¦)), β*, < )) | ||
Theorem | sge0pnfval 45089 | If a term in the sum of nonnegative extended reals is +β, then the value of the sum is +β. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β π) & β’ (π β πΉ:πβΆ(0[,]+β)) & β’ (π β +β β ran πΉ) β β’ (π β (Ξ£^βπΉ) = +β) | ||
Theorem | fge0iccre 45090 | A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β πΉ:πβΆ(0[,]+β)) & β’ (π β Β¬ +β β ran πΉ) β β’ (π β πΉ:πβΆβ) | ||
Theorem | sge0z 45091* | Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²ππ & β’ (π β π΄ β π) β β’ (π β (Ξ£^β(π β π΄ β¦ 0)) = 0) | ||
Theorem | sge00 45092 | The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (Ξ£^ββ ) = 0 | ||
Theorem | fsumlesge0 45093* | Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β π) & β’ (π β πΉ:πβΆ(0[,)+β)) & β’ (π β π β π) & β’ (π β π β Fin) β β’ (π β Ξ£π₯ β π (πΉβπ₯) β€ (Ξ£^βπΉ)) | ||
Theorem | sge0revalmpt 45094* | Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²π₯π & β’ (π β π΄ β π) & β’ ((π β§ π₯ β π΄) β π΅ β (0[,)+β)) β β’ (π β (Ξ£^β(π₯ β π΄ β¦ π΅)) = sup(ran (π¦ β (π« π΄ β© Fin) β¦ Ξ£π₯ β π¦ π΅), β*, < )) | ||
Theorem | sge0sn 45095 | A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π΄ β π) & β’ (π β πΉ:{π΄}βΆ(0[,]+β)) β β’ (π β (Ξ£^βπΉ) = (πΉβπ΄)) | ||
Theorem | sge0tsms 45096 | Ξ£^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ πΊ = (β*π βΎs (0[,]+β)) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(0[,]+β)) β β’ (π β (Ξ£^βπΉ) β (πΊ tsums πΉ)) | ||
Theorem | sge0cl 45097 | The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β π) & β’ (π β πΉ:πβΆ(0[,]+β)) β β’ (π β (Ξ£^βπΉ) β (0[,]+β)) | ||
Theorem | sge0f1o 45098* | Re-index a nonnegative extended sum using a bijection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²ππ & β’ β²ππ & β’ (π = πΊ β π΅ = π·) & β’ (π β πΆ β π) & β’ (π β πΉ:πΆβ1-1-ontoβπ΄) & β’ ((π β§ π β πΆ) β (πΉβπ) = πΊ) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) β β’ (π β (Ξ£^β(π β π΄ β¦ π΅)) = (Ξ£^β(π β πΆ β¦ π·))) | ||
Theorem | sge0snmpt 45099* | A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π΄ β π) & β’ (π β πΆ β (0[,]+β)) & β’ (π = π΄ β π΅ = πΆ) β β’ (π β (Ξ£^β(π β {π΄} β¦ π΅)) = πΆ) | ||
Theorem | sge0ge0 45100 | The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β π) & β’ (π β πΉ:πβΆ(0[,]+β)) β β’ (π β 0 β€ (Ξ£^βπΉ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |