Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-natded5.2-2 Structured version   Visualization version   GIF version

Theorem ex-natded5.2-2 28098
 Description: A more efficient proof of Theorem 5.2 of [Clemente] p. 15. Compare with ex-natded5.2 28097 and ex-natded5.2i 28099. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ex-natded5.2.1 (𝜑 → ((𝜓𝜒) → 𝜃))
ex-natded5.2.2 (𝜑 → (𝜒𝜓))
ex-natded5.2.3 (𝜑𝜒)
Assertion
Ref Expression
ex-natded5.2-2 (𝜑𝜃)

Proof of Theorem ex-natded5.2-2
StepHypRef Expression
1 ex-natded5.2.3 . . 3 (𝜑𝜒)
2 ex-natded5.2.2 . . 3 (𝜑 → (𝜒𝜓))
31, 2mpd 15 . 2 (𝜑𝜓)
4 ex-natded5.2.1 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
53, 1, 4mp2and 695 1 (𝜑𝜃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 208  df-an 397 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator