Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp2and | Structured version Visualization version GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mp2and.1 | ⊢ (𝜑 → 𝜓) |
mp2and.2 | ⊢ (𝜑 → 𝜒) |
mp2and.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mp2and | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2and.2 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mp2and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | mp2and.3 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpand 691 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
Copyright terms: Public domain | W3C validator |