Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exp510 Structured version   Visualization version   GIF version

Theorem exp510 34423
Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
exp510.1 ((𝜑 ∧ (((𝜓𝜒) ∧ 𝜃) ∧ 𝜏)) → 𝜂)
Assertion
Ref Expression
exp510 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Proof of Theorem exp510
StepHypRef Expression
1 exp510.1 . . 3 ((𝜑 ∧ (((𝜓𝜒) ∧ 𝜃) ∧ 𝜏)) → 𝜂)
21ex 412 . 2 (𝜑 → ((((𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂))
32exp5j 445 1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator