MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp5j Structured version   Visualization version   GIF version

Theorem exp5j 445
Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
exp5j.1 (𝜑 → ((((𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂))
Assertion
Ref Expression
exp5j (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Proof of Theorem exp5j
StepHypRef Expression
1 exp5j.1 . . 3 (𝜑 → ((((𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂))
21expd 415 . 2 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → (𝜏𝜂)))
32exp4c 432 1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  swrdnd2  14296  lcmfunsnlem2lem1  16271  exp510  34423  lindslinindsimp1  45686
  Copyright terms: Public domain W3C validator