MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falimd Structured version   Visualization version   GIF version

Theorem falimd 1559
Description: The truth value implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
falimd ((𝜑 ∧ ⊥) → 𝜓)

Proof of Theorem falimd
StepHypRef Expression
1 falim 1558 . 2 (⊥ → 𝜓)
21adantl 481 1 ((𝜑 ∧ ⊥) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wfal 1553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-fal 1554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator