![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version |
Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1547. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
Ref | Expression |
---|---|
falim | ⊢ (⊥ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1551 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-tru 1540 df-fal 1550 |
This theorem is referenced by: falimd 1555 tbw-bijust 1696 tbw-negdf 1697 tbw-ax4 1701 merco1 1711 merco2 1734 ab0w 4401 csbprc 4432 ralf0 4537 ralnralall 4538 tgcgr4 28549 frgrregord013 30419 nalfal 36361 imsym1 36376 consym1 36378 dissym1 36379 unisym1 36381 exisym1 36382 subsym1 36385 bj-falor2 36543 bj-prmoore 37073 wl-2mintru2 37449 orfa1 38037 orfa2 38038 bifald 38039 botel 38056 lindslinindsimp2 48181 |
Copyright terms: Public domain | W3C validator |