| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1549. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| falim | ⊢ (⊥ → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1553 | . 2 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 |
| This theorem is referenced by: falimd 1557 tbw-bijust 1697 tbw-negdf 1698 tbw-ax4 1702 merco1 1712 merco2 1735 ab0w 4359 csbprc 4389 ralf0 4494 ralnralall 4495 tgcgr4 28476 frgrregord013 30343 nalfal 36379 imsym1 36394 consym1 36396 dissym1 36397 unisym1 36399 exisym1 36400 subsym1 36403 bj-falor2 36561 bj-prmoore 37091 wl-2mintru2 37467 orfa1 38067 orfa2 38068 bifald 38069 botel 38086 lindslinindsimp2 48353 |
| Copyright terms: Public domain | W3C validator |