Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version |
Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1549. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
Ref | Expression |
---|---|
falim | ⊢ (⊥ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1553 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: falimd 1557 tbw-bijust 1702 tbw-negdf 1703 tbw-ax4 1707 merco1 1717 merco2 1740 ab0w 4304 csbprc 4337 ralf0 4441 ralnralall 4446 tgcgr4 26796 frgrregord013 28660 nalfal 34519 imsym1 34534 consym1 34536 dissym1 34537 unisym1 34539 exisym1 34540 bj-falor2 34694 bj-prmoore 35213 wl-2mintru2 35589 orfa1 36170 orfa2 36171 bifald 36172 botel 36189 lindslinindsimp2 45692 |
Copyright terms: Public domain | W3C validator |