| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1550. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| falim | ⊢ (⊥ → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1554 | . 2 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: falimd 1558 tbw-bijust 1698 tbw-negdf 1699 tbw-ax4 1703 merco1 1713 merco2 1736 ab0w 4330 csbprc 4360 ralf0 4465 ralnralall 4466 tgcgr4 28476 frgrregord013 30339 nalfal 36377 imsym1 36392 consym1 36394 dissym1 36395 unisym1 36397 exisym1 36398 subsym1 36401 bj-falor2 36559 bj-prmoore 37089 wl-2mintru2 37465 orfa1 38065 orfa2 38066 bifald 38067 botel 38084 lindslinindsimp2 48448 |
| Copyright terms: Public domain | W3C validator |