![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version |
Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1545. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
Ref | Expression |
---|---|
falim | ⊢ (⊥ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1549 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-tru 1538 df-fal 1548 |
This theorem is referenced by: falimd 1553 tbw-bijust 1693 tbw-negdf 1694 tbw-ax4 1698 merco1 1708 merco2 1731 ab0w 4385 csbprc 4415 ralf0 4520 ralnralall 4521 tgcgr4 28536 frgrregord013 30406 nalfal 36346 imsym1 36361 consym1 36363 dissym1 36364 unisym1 36366 exisym1 36367 subsym1 36370 bj-falor2 36528 bj-prmoore 37058 wl-2mintru2 37434 orfa1 38032 orfa2 38033 bifald 38034 botel 38051 lindslinindsimp2 48237 |
Copyright terms: Public domain | W3C validator |