Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version |
Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1549. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
Ref | Expression |
---|---|
falim | ⊢ (⊥ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1553 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: falimd 1557 tbw-bijust 1701 tbw-negdf 1702 tbw-ax4 1706 merco1 1716 merco2 1739 ab0w 4307 csbprc 4340 ralf0 4444 ralnralall 4449 tgcgr4 26892 frgrregord013 28759 nalfal 34592 imsym1 34607 consym1 34609 dissym1 34610 unisym1 34612 exisym1 34613 bj-falor2 34767 bj-prmoore 35286 wl-2mintru2 35662 orfa1 36243 orfa2 36244 bifald 36245 botel 36262 lindslinindsimp2 45804 |
Copyright terms: Public domain | W3C validator |