![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version |
Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1552. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
Ref | Expression |
---|---|
falim | ⊢ (⊥ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1556 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1545 df-fal 1555 |
This theorem is referenced by: falimd 1560 tbw-bijust 1701 tbw-negdf 1702 tbw-ax4 1706 merco1 1716 merco2 1739 ab0w 4374 csbprc 4407 ralf0 4514 ralnralall 4519 tgcgr4 27782 frgrregord013 29648 nalfal 35288 imsym1 35303 consym1 35305 dissym1 35306 unisym1 35308 exisym1 35309 subsym1 35312 bj-falor2 35463 bj-prmoore 35996 wl-2mintru2 36372 orfa1 36953 orfa2 36954 bifald 36955 botel 36972 lindslinindsimp2 47144 |
Copyright terms: Public domain | W3C validator |