| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1550. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| falim | ⊢ (⊥ → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1554 | . 2 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: falimd 1558 tbw-bijust 1698 tbw-negdf 1699 tbw-ax4 1703 merco1 1713 merco2 1736 ab0w 4342 csbprc 4372 ralf0 4477 ralnralall 4478 tgcgr4 28458 frgrregord013 30324 nalfal 36391 imsym1 36406 consym1 36408 dissym1 36409 unisym1 36411 exisym1 36412 subsym1 36415 bj-falor2 36573 bj-prmoore 37103 wl-2mintru2 37479 orfa1 38079 orfa2 38080 bifald 38081 botel 38098 lindslinindsimp2 48452 |
| Copyright terms: Public domain | W3C validator |