| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1550. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| falim | ⊢ (⊥ → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1554 | . 2 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: falimd 1558 tbw-bijust 1698 tbw-negdf 1699 tbw-ax4 1703 merco1 1713 merco2 1736 ab0w 4354 csbprc 4384 ralf0 4489 ralnralall 4490 tgcgr4 28456 frgrregord013 30322 nalfal 36367 imsym1 36382 consym1 36384 dissym1 36385 unisym1 36387 exisym1 36388 subsym1 36391 bj-falor2 36549 bj-prmoore 37079 wl-2mintru2 37455 orfa1 38055 orfa2 38056 bifald 38057 botel 38074 lindslinindsimp2 48387 |
| Copyright terms: Public domain | W3C validator |