| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1551. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| falim | ⊢ (⊥ → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1555 | . 2 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1544 df-fal 1554 |
| This theorem is referenced by: falimd 1559 tbw-bijust 1699 tbw-negdf 1700 tbw-ax4 1704 merco1 1714 merco2 1737 ab0w 4324 csbprc 4354 ralf0 4459 ralnralall 4460 tgcgr4 28504 frgrregord013 30367 nalfal 36437 imsym1 36452 consym1 36454 dissym1 36455 unisym1 36457 exisym1 36458 subsym1 36461 bj-falor2 36619 bj-prmoore 37149 wl-2mintru2 37525 orfa1 38125 orfa2 38126 bifald 38127 botel 38144 lindslinindsimp2 48495 |
| Copyright terms: Public domain | W3C validator |