![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version |
Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1551. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
Ref | Expression |
---|---|
falim | ⊢ (⊥ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1555 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1544 df-fal 1554 |
This theorem is referenced by: falimd 1559 tbw-bijust 1700 tbw-negdf 1701 tbw-ax4 1705 merco1 1715 merco2 1738 ab0w 4372 csbprc 4405 ralf0 4512 ralnralall 4517 tgcgr4 27771 frgrregord013 29637 nalfal 35276 imsym1 35291 consym1 35293 dissym1 35294 unisym1 35296 exisym1 35297 subsym1 35300 bj-falor2 35451 bj-prmoore 35984 wl-2mintru2 36360 orfa1 36941 orfa2 36942 bifald 36943 botel 36960 lindslinindsimp2 47097 |
Copyright terms: Public domain | W3C validator |