![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version |
Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1543. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
Ref | Expression |
---|---|
falim | ⊢ (⊥ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1547 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1536 df-fal 1546 |
This theorem is referenced by: falimd 1551 tbw-bijust 1692 tbw-negdf 1693 tbw-ax4 1697 merco1 1707 merco2 1730 ab0w 4375 csbprc 4408 ralf0 4515 ralnralall 4520 tgcgr4 28407 frgrregord013 30277 nalfal 36018 imsym1 36033 consym1 36035 dissym1 36036 unisym1 36038 exisym1 36039 subsym1 36042 bj-falor2 36193 bj-prmoore 36725 wl-2mintru2 37101 orfa1 37689 orfa2 37690 bifald 37691 botel 37708 lindslinindsimp2 47717 |
Copyright terms: Public domain | W3C validator |