| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version | ||
| Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1550. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| falim | ⊢ (⊥ → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1554 | . 2 ⊢ ¬ ⊥ | |
| 2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: falimd 1558 tbw-bijust 1698 tbw-negdf 1699 tbw-ax4 1703 merco1 1713 merco2 1736 ab0w 4338 csbprc 4368 ralf0 4473 ralnralall 4474 tgcgr4 28434 frgrregord013 30297 nalfal 36364 imsym1 36379 consym1 36381 dissym1 36382 unisym1 36384 exisym1 36385 subsym1 36388 bj-falor2 36546 bj-prmoore 37076 wl-2mintru2 37452 orfa1 38052 orfa2 38053 bifald 38054 botel 38071 lindslinindsimp2 48425 |
| Copyright terms: Public domain | W3C validator |