MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falimtru Structured version   Visualization version   GIF version

Theorem falimtru 1565
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) An alternate proof is possible using falim 1557 instead of trud 1550 but the present proof using trud 1550 emphasizes that the result does not require the principle of explosion. (Proof modification is discouraged.)
Assertion
Ref Expression
falimtru ((⊥ → ⊤) ↔ ⊤)

Proof of Theorem falimtru
StepHypRef Expression
1 trud 1550 . 2 (⊥ → ⊤)
21bitru 1549 1 ((⊥ → ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wtru 1541  wfal 1552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator