MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falimtru Structured version   Visualization version   GIF version

Theorem falimtru 1564
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) An alternate proof is possible using falim 1556 instead of trud 1549 but the present proof using trud 1549 emphasizes that the result does not require the principle of explosion. (Proof modification is discouraged.)
Assertion
Ref Expression
falimtru ((⊥ → ⊤) ↔ ⊤)

Proof of Theorem falimtru
StepHypRef Expression
1 trud 1549 . 2 (⊥ → ⊤)
21bitru 1548 1 ((⊥ → ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator