MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falimtru Structured version   Visualization version   GIF version

Theorem falimtru 1568
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) An alternate proof is possible using falim 1560 instead of trud 1553 but the present proof using trud 1553 emphasizes that the result does not require the principle of explosion. (Proof modification is discouraged.)
Assertion
Ref Expression
falimtru ((⊥ → ⊤) ↔ ⊤)

Proof of Theorem falimtru
StepHypRef Expression
1 trud 1553 . 2 (⊥ → ⊤)
21bitru 1552 1 ((⊥ → ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wtru 1544  wfal 1555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-tru 1546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator