MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falimtru Structured version   Visualization version   GIF version

Theorem falimtru 1679
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) An alternate proof is possible using falim 1671 instead of trud 1664 but the present proof using trud 1664 emphasizes that the result does not require the principle of explosion. (Proof modification is discouraged.)
Assertion
Ref Expression
falimtru ((⊥ → ⊤) ↔ ⊤)

Proof of Theorem falimtru
StepHypRef Expression
1 trud 1664 . 2 (⊥ → ⊤)
21bitru 1663 1 ((⊥ → ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wtru 1654  wfal 1666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-tru 1657
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator