Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege22 Structured version   Visualization version   GIF version

Theorem frege22 41289
Description: A closed form of com45 97. Proposition 22 of [Frege1879] p. 41. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege22 ((𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂))))) → (𝜑 → (𝜓 → (𝜒 → (𝜏 → (𝜃𝜂))))))

Proof of Theorem frege22
StepHypRef Expression
1 frege16 41286 . 2 ((𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))) → (𝜓 → (𝜒 → (𝜏 → (𝜃𝜂)))))
2 frege5 41270 . 2 (((𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))) → (𝜓 → (𝜒 → (𝜏 → (𝜃𝜂))))) → ((𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂))))) → (𝜑 → (𝜓 → (𝜒 → (𝜏 → (𝜃𝜂)))))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂))))) → (𝜑 → (𝜓 → (𝜒 → (𝜏 → (𝜃𝜂))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41260  ax-frege2 41261  ax-frege8 41279
This theorem is referenced by:  frege23  41295
  Copyright terms: Public domain W3C validator