| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege5 | Structured version Visualization version GIF version | ||
| Description: A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege5 | ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-frege1 43767 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) | |
| 2 | frege4 43776 | . 2 ⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) → ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43767 ax-frege2 43768 |
| This theorem is referenced by: rp-frege25 43782 frege6 43783 frege7 43785 frege9 43789 frege12 43790 frege16 43793 frege25 43794 frege18 43795 frege22 43796 frege14 43800 frege29 43808 frege34 43814 frege45 43826 frege80 43920 frege90 43930 |
| Copyright terms: Public domain | W3C validator |