![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege5 | Structured version Visualization version GIF version |
Description: A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege5 | ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege1 42541 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) | |
2 | frege4 42550 | . 2 ⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) → ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 42541 ax-frege2 42542 |
This theorem is referenced by: rp-frege25 42556 frege6 42557 frege7 42559 frege9 42563 frege12 42564 frege16 42567 frege25 42568 frege18 42569 frege22 42570 frege14 42574 frege29 42582 frege34 42588 frege45 42600 frege80 42694 frege90 42704 |
Copyright terms: Public domain | W3C validator |