Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege5 Structured version   Visualization version   GIF version

Theorem frege5 43789
Description: A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege5 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))

Proof of Theorem frege5
StepHypRef Expression
1 ax-frege1 43779 . 2 ((𝜑𝜓) → (𝜒 → (𝜑𝜓)))
2 frege4 43788 . 2 (((𝜑𝜓) → (𝜒 → (𝜑𝜓))) → ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 43779  ax-frege2 43780
This theorem is referenced by:  rp-frege25  43794  frege6  43795  frege7  43797  frege9  43801  frege12  43802  frege16  43805  frege25  43806  frege18  43807  frege22  43808  frege14  43812  frege29  43820  frege34  43826  frege45  43838  frege80  43932  frege90  43942
  Copyright terms: Public domain W3C validator