Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege5 Structured version   Visualization version   GIF version

Theorem frege5 43777
Description: A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege5 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))

Proof of Theorem frege5
StepHypRef Expression
1 ax-frege1 43767 . 2 ((𝜑𝜓) → (𝜒 → (𝜑𝜓)))
2 frege4 43776 . 2 (((𝜑𝜓) → (𝜒 → (𝜑𝜓))) → ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 43767  ax-frege2 43768
This theorem is referenced by:  rp-frege25  43782  frege6  43783  frege7  43785  frege9  43789  frege12  43790  frege16  43793  frege25  43794  frege18  43795  frege22  43796  frege14  43800  frege29  43808  frege34  43814  frege45  43826  frege80  43920  frege90  43930
  Copyright terms: Public domain W3C validator