Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege5 Structured version   Visualization version   GIF version

Theorem frege5 43006
Description: A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege5 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))

Proof of Theorem frege5
StepHypRef Expression
1 ax-frege1 42996 . 2 ((𝜑𝜓) → (𝜒 → (𝜑𝜓)))
2 frege4 43005 . 2 (((𝜑𝜓) → (𝜒 → (𝜑𝜓))) → ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 42996  ax-frege2 42997
This theorem is referenced by:  rp-frege25  43011  frege6  43012  frege7  43014  frege9  43018  frege12  43019  frege16  43022  frege25  43023  frege18  43024  frege22  43025  frege14  43029  frege29  43037  frege34  43043  frege45  43055  frege80  43149  frege90  43159
  Copyright terms: Public domain W3C validator