Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege5 Structured version   Visualization version   GIF version

Theorem frege5 43903
Description: A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege5 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))

Proof of Theorem frege5
StepHypRef Expression
1 ax-frege1 43893 . 2 ((𝜑𝜓) → (𝜒 → (𝜑𝜓)))
2 frege4 43902 . 2 (((𝜑𝜓) → (𝜒 → (𝜑𝜓))) → ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 43893  ax-frege2 43894
This theorem is referenced by:  rp-frege25  43908  frege6  43909  frege7  43911  frege9  43915  frege12  43916  frege16  43919  frege25  43920  frege18  43921  frege22  43922  frege14  43926  frege29  43934  frege34  43940  frege45  43952  frege80  44046  frege90  44056
  Copyright terms: Public domain W3C validator