Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege5 | Structured version Visualization version GIF version |
Description: A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege5 | ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege1 41398 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) | |
2 | frege4 41407 | . 2 ⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) → ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 41398 ax-frege2 41399 |
This theorem is referenced by: rp-frege25 41413 frege6 41414 frege7 41416 frege9 41420 frege12 41421 frege16 41424 frege25 41425 frege18 41426 frege22 41427 frege14 41431 frege29 41439 frege34 41445 frege45 41457 frege80 41551 frege90 41561 |
Copyright terms: Public domain | W3C validator |