Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege5 | Structured version Visualization version GIF version |
Description: A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege5 | ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege1 41287 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) | |
2 | frege4 41296 | . 2 ⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) → ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 41287 ax-frege2 41288 |
This theorem is referenced by: rp-frege25 41302 frege6 41303 frege7 41305 frege9 41309 frege12 41310 frege16 41313 frege25 41314 frege18 41315 frege22 41316 frege14 41320 frege29 41328 frege34 41334 frege45 41346 frege80 41440 frege90 41450 |
Copyright terms: Public domain | W3C validator |