|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege10 | Structured version Visualization version GIF version | ||
| Description: Result commuting antecedents within an antecedent. Proposition 10 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege10 | ⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-frege8 43827 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | frege9 43830 | . 2 ⊢ (((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) → (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43808 ax-frege2 43809 ax-frege8 43827 | 
| This theorem is referenced by: frege30 43850 | 
| Copyright terms: Public domain | W3C validator |