| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege10 | Structured version Visualization version GIF version | ||
| Description: Result commuting antecedents within an antecedent. Proposition 10 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege10 | ⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-frege8 43770 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | frege9 43773 | . 2 ⊢ (((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) → (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43751 ax-frege2 43752 ax-frege8 43770 |
| This theorem is referenced by: frege30 43793 |
| Copyright terms: Public domain | W3C validator |