Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege3 Structured version   Visualization version   GIF version

Theorem frege3 41403
Description: Add antecedent to ax-frege2 41399. Special case of rp-frege3g 41402. Proposition 3 of [Frege1879] p. 29. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege3 ((𝜑𝜓) → ((𝜒 → (𝜑𝜓)) → ((𝜒𝜑) → (𝜒𝜓))))

Proof of Theorem frege3
StepHypRef Expression
1 ax-frege2 41399 . 2 ((𝜒 → (𝜑𝜓)) → ((𝜒𝜑) → (𝜒𝜓)))
2 ax-frege1 41398 . 2 (((𝜒 → (𝜑𝜓)) → ((𝜒𝜑) → (𝜒𝜓))) → ((𝜑𝜓) → ((𝜒 → (𝜑𝜓)) → ((𝜒𝜑) → (𝜒𝜓)))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜒 → (𝜑𝜓)) → ((𝜒𝜑) → (𝜒𝜓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41398  ax-frege2 41399
This theorem is referenced by:  frege4  41407
  Copyright terms: Public domain W3C validator