Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-misc1-frege Structured version   Visualization version   GIF version

Theorem rp-misc1-frege 41357
Description: Double-use of ax-frege2 41352. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
rp-misc1-frege (((𝜑 → (𝜓𝜒)) → (𝜑𝜓)) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))

Proof of Theorem rp-misc1-frege
StepHypRef Expression
1 ax-frege2 41352 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
2 ax-frege2 41352 . 2 (((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒))) → (((𝜑 → (𝜓𝜒)) → (𝜑𝜓)) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))))
31, 2ax-mp 5 1 (((𝜑 → (𝜓𝜒)) → (𝜑𝜓)) → ((𝜑 → (𝜓𝜒)) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege2 41352
This theorem is referenced by:  rp-4frege  41363
  Copyright terms: Public domain W3C validator