Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege67a Structured version   Visualization version   GIF version

Theorem frege67a 41382
Description: Lemma for frege68a 41383. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege67a ((((𝜓𝜒) ↔ 𝜃) → (𝜃 → (𝜓𝜒))) → (((𝜓𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))))

Proof of Theorem frege67a
StepHypRef Expression
1 ax-frege58a 41372 . 2 ((𝜓𝜒) → if-(𝜑, 𝜓, 𝜒))
2 frege7 41305 . 2 (((𝜓𝜒) → if-(𝜑, 𝜓, 𝜒)) → ((((𝜓𝜒) ↔ 𝜃) → (𝜃 → (𝜓𝜒))) → (((𝜓𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒)))))
31, 2ax-mp 5 1 ((((𝜓𝜒) ↔ 𝜃) → (𝜃 → (𝜓𝜒))) → (((𝜓𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege58a 41372
This theorem is referenced by:  frege68a  41383
  Copyright terms: Public domain W3C validator