Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege67a | Structured version Visualization version GIF version |
Description: Lemma for frege68a 41383. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege67a | ⊢ ((((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) → (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58a 41372 | . 2 ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | |
2 | frege7 41305 | . 2 ⊢ (((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) → ((((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) → (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) → (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 41287 ax-frege2 41288 ax-frege58a 41372 |
This theorem is referenced by: frege68a 41383 |
Copyright terms: Public domain | W3C validator |