| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege68a | Structured version Visualization version GIF version | ||
| Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege68a | ⊢ (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege57aid 43830 | . 2 ⊢ (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) | |
| 2 | frege67a 43843 | . 2 ⊢ ((((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) → (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 43748 ax-frege2 43749 ax-frege8 43767 ax-frege52a 43815 ax-frege58a 43833 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-tru 1542 df-fal 1552 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |