Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege66a | Structured version Visualization version GIF version |
Description: Swap antecedents of frege65a 41353. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege66a | ⊢ (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege65a 41353 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | |
2 | ax-frege8 41279 | . 2 ⊢ ((((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁))))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 if-wif 1063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 41260 ax-frege2 41261 ax-frege8 41279 ax-frege58a 41345 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |