Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ggen22 Structured version   Visualization version   GIF version

Theorem ggen22 42243
Description: gen22 42242 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ggen22.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ggen22 (𝜑 → (𝜓 → ∀𝑥𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜓,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜒(𝑥,𝑦)

Proof of Theorem ggen22
StepHypRef Expression
1 ggen22.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimdv 1932 . 2 (𝜑 → (𝜓 → ∀𝑦𝜒))
32alrimdv 1932 1 (𝜑 → (𝜓 → ∀𝑥𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator